reminders
play

Reminders Continue working on Homework #2 It is due in class on - PowerPoint PPT Presentation

Reminders Continue working on Homework #2 It is due in class on Thursday Check Piazza for answers to questions Extra credit for stopping by my office (ITE 214) Wednesday @ 10:30 - 11:30 Thursday @ 11:30 12:30 Drop


  1. Reminders ● Continue working on Homework #2 – It is due in class on Thursday – Check Piazza for answers to questions ● Extra credit for stopping by my office (ITE 214) – Wednesday @ 10:30 - 11:30 – Thursday @ 11:30 – 12:30 ● Drop date (with a “W”) is Tomorrow

  2. Review of Inference ● Use logic to show a proposition is true (or false) ● Basis of all mathematical proofs ● We want to prove a conclusion (also called a conjecture ) ● Start with a set of premises (also called lemmas ) ● Follow valid rules of inference to produce corollaries ● A valid series of corollaries to reach the conclusion is a theorem

  3. Rules of Inference ∨ p p → q p q ∨ p → q q → r ¬p r Modus Hypothetical Resolution –----------- ponens –----------- syllogism –------------ ∴ q ∴ p → r ∴ q r ∨ ¬q ∨ p q p p → q ¬p q Modus Disjunctive Conjunction –------------ tollens –------------ syllogism –------------ ∴ ¬p ∴ q ∴ p q ∧

  4. Review of Inference p p → q Modus p : It is sunny this afternoon –----------- ponens ∴ q q : It is colder than yesterday ¬q r : We will go swimming p → q Modus s : We will take a canoe trip –------------ tollens ∴ ¬p t : We will be home by sunset p → q Premises : q → r Hypothetical –----------- syllogism 1. ¬ p q ∧ ∴ p → r 2. r → p p q ∨ 3. ¬ r → s ¬p Disjunctive –------------ syllogism 4. s → t ∴ q Conclusion : p q ∨ ¬p r ∨ t Resolution –------------ ∴ q r ∨ p q Conjunction –------------ ∴ p q ∧

  5. Review of Inference p : It is sunny this afternoon p 1. ¬ p q ∧ (premise 1) q : It is colder than yesterday p → q Modus r : We will go swimming –----------- ponens s : We will take a canoe trip ∴ q t : We will be home by sunset ¬q Premises : p → q Modus 1. ¬ p q ∧ –------------ tollens ∴ ¬p 2. r → p p → q 3. ¬ r → s q → r Hypothetical 4. s → t –----------- syllogism ∴ p → r Conclusion : p q ∨ t ¬p Disjunctive –------------ syllogism ∴ q p q ∨ ¬p r ∨ Resolution –------------ ∴ q r ∨ p q Conjunction –------------ ∴ p q ∧

  6. Review of Inference p : It is sunny this afternoon p 1. ¬ p q ∧ (premise 1) q : It is colder than yesterday p → q Modus r : We will go swimming 2. ¬ p (conjunction) –----------- ponens s : We will take a canoe trip ∴ q t : We will be home by sunset ¬q Premises : p → q Modus 1. ¬ p q ∧ –------------ tollens ∴ ¬p 2. r → p p → q 3. ¬ r → s q → r Hypothetical 4. s → t –----------- syllogism ∴ p → r Conclusion : p q ∨ t ¬p Disjunctive –------------ syllogism ∴ q p q ∨ ¬p r ∨ Resolution –------------ ∴ q r ∨ p q Conjunction –------------ ∴ p q ∧

  7. Review of Inference p : It is sunny this afternoon p 1. ¬ p q ∧ (premise 1) q : It is colder than yesterday p → q Modus r : We will go swimming 2. ¬ p (conjunction) –----------- ponens s : We will take a canoe trip ∴ q 3. r → p (premise 2) t : We will be home by sunset ¬q Premises : p → q Modus 1. ¬ p q ∧ –------------ tollens ∴ ¬p 2. r → p p → q 3. ¬ r → s q → r Hypothetical 4. s → t –----------- syllogism ∴ p → r Conclusion : p q ∨ t ¬p Disjunctive –------------ syllogism ∴ q p q ∨ ¬p r ∨ Resolution –------------ ∴ q r ∨ p q Conjunction –------------ ∴ p q ∧

  8. Review of Inference p : It is sunny this afternoon p 1. ¬ p q ∧ (premise 1) q : It is colder than yesterday p → q Modus r : We will go swimming 2. ¬ p (conjunction) –----------- ponens s : We will take a canoe trip ∴ q 3. r → p (premise 2) t : We will be home by sunset ¬q 4. ¬ r (modus tollens 2,3) Premises : p → q Modus 1. ¬ p q ∧ –------------ tollens ∴ ¬p 2. r → p p → q 3. ¬ r → s q → r Hypothetical 4. s → t –----------- syllogism ∴ p → r Conclusion : p q ∨ t ¬p Disjunctive –------------ syllogism ∴ q p q ∨ ¬p r ∨ Resolution –------------ ∴ q r ∨ p q Conjunction –------------ ∴ p q ∧

  9. Review of Inference p : It is sunny this afternoon p 1. ¬ p q ∧ (premise 1) q : It is colder than yesterday p → q Modus r : We will go swimming 2. ¬ p (conjunction) –----------- ponens s : We will take a canoe trip ∴ q 3. r → p (premise 2) t : We will be home by sunset ¬q 4. ¬ r (modus tollens 2,3) Premises : p → q Modus 5. ¬ r → s (premise 3) 1. ¬ p q ∧ –------------ tollens ∴ ¬p 2. r → p p → q 3. ¬ r → s q → r Hypothetical 4. s → t –----------- syllogism ∴ p → r Conclusion : p q ∨ t ¬p Disjunctive –------------ syllogism ∴ q p q ∨ ¬p r ∨ Resolution –------------ ∴ q r ∨ p q Conjunction –------------ ∴ p q ∧

  10. Review of Inference p : It is sunny this afternoon p 1. ¬ p q ∧ (premise 1) q : It is colder than yesterday p → q Modus r : We will go swimming 2. ¬ p (conjunction) –----------- ponens s : We will take a canoe trip ∴ q 3. r → p (premise 2) t : We will be home by sunset ¬q 4. ¬ r (modus tollens 2,3) Premises : p → q Modus 5. ¬ r → s (premise 3) 1. ¬ p q ∧ –------------ tollens 6. s ∴ ¬p (modus ponens 4,5) 2. r → p p → q 3. ¬ r → s q → r Hypothetical 4. s → t –----------- syllogism ∴ p → r Conclusion : p q ∨ t ¬p Disjunctive –------------ syllogism ∴ q p q ∨ ¬p r ∨ Resolution –------------ ∴ q r ∨ p q Conjunction –------------ ∴ p q ∧

  11. Review of Inference p : It is sunny this afternoon p 1. ¬ p q ∧ (premise 1) q : It is colder than yesterday p → q Modus r : We will go swimming 2. ¬ p (conjunction) –----------- ponens s : We will take a canoe trip ∴ q 3. r → p (premise 2) t : We will be home by sunset ¬q 4. ¬ r (modus tollens 2,3) Premises : p → q Modus 5. ¬ r → s (premise 3) 1. ¬ p q ∧ –------------ tollens 6. s ∴ ¬p (modus ponens 4,5) 2. r → p 7. s → t (premise 4) p → q 3. ¬ r → s q → r Hypothetical 4. s → t –----------- syllogism ∴ p → r Conclusion : p q ∨ t ¬p Disjunctive –------------ syllogism ∴ q p q ∨ ¬p r ∨ Resolution –------------ ∴ q r ∨ p q Conjunction –------------ ∴ p q ∧

  12. Review of Inference p : It is sunny this afternoon p 1. ¬ p q ∧ (premise 1) q : It is colder than yesterday p → q Modus r : We will go swimming 2. ¬ p (conjunction) –----------- ponens s : We will take a canoe trip ∴ q 3. r → p (premise 2) t : We will be home by sunset ¬q 4. ¬ r (modus tollens 2,3) Premises : p → q Modus 5. ¬ r → s (premise 3) 1. ¬ p q ∧ –------------ tollens 6. s ∴ ¬p (modus ponens 4,5) 2. r → p 7. s → t (premise 4) p → q 3. ¬ r → s q → r Hypothetical 8. t (modus ponens 6,7) 4. s → t –----------- syllogism ∴ p → r Conclusion : p q ∨ t ¬p Disjunctive –------------ syllogism ∴ q p q ∨ ¬p r ∨ Resolution –------------ ∴ q r ∨ p q Conjunction –------------ ∴ p q ∧

  13. Fallacies ● Affirming the consequent ( abductive reasoning ) – If q and p → q, then p Eg: If Bill Gates owns Fort Knox, then he is rich. Bill Gates is rich. Therefore, he owns – Fort Knox. ● Denying the atecedent ( inverse error ) – If ¬ p and p → q , then ¬ q If Queen Elizabeth is an American citizen, then she is a human being. Queen Elizabeth – is not an American citizen. Therefore, Queen Elizabeth is not a human being. ● Circular reasoning – Prove something is true by assuming it is true

  14. CMSC 203: Lecture 4 Boolean Algebra and Circuits

  15. Background ● George Boole, The Laws of Thought (1854) – Claude Shannon adapted to circuit design (1938) – These rules are the basis of Boolean Algebra ● Values contain either 1 (T, voltage) or 0 (F, no voltage) ● Apply logic to create Boolean functions ● Circuit : Boolean function that specifies value of output for each set of inputs – Building block of computers

  16. Boolean Logic ● Complement – Logical “NOT” : Denoted by bar, or by ¬ (or ~) – 0 = 1, 1 = 0 ● Sum – Logical “OR” : Denoted by +, or by ∨ – 1 + 1 = 1; 1 + 0 = 1; 0 + 1 = 1; 0 + 0 = 0 ● Product – Logical “AND” : Denoted by , or by ∙ ∧ – 1 1 = 1; 1 0 = 0; 0 1 = 0; 0 0 = 0 ∙ ∙ ∙ ∙

  17. Logic Gates ● Gates : basic elements of circuits ● Implementats a Boolean operation ● Gates we look at have no “memory” – Thus, input → output ● Multiple inputs may be fed, but only one output

  18. Logic Symbols A A AB AB A B ∧ ¬(A B) ∧ B B AND NAND A A A + B A + B ∨ A B ∨ ¬(A B) B B OR NOR A A ⊕ A A B ¬A B NOT XOR

  19. Combining Gates ● We can chain logic gates into logic circuits – Similar to combining logical operators into logic statements A B ¬B A ¬B ∨ A A ¬ ∨ B 1 1 0 1 1 0 1 1 0 1 0 0 ¬ B 0 0 1 1 B

  20. Circuit Example ∧ A ¬B A ¬B (A ¬B) (B ¬A) ∧ ∨ ∧ ¬A B ∧ B ¬A A B ¬A ¬B A ¬B ∧ B ¬A ∧ (A ¬B) (B ¬A) ∧ ∨ ∧ 1 1 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0

Recommend


More recommend