relaxation of isolated
play

Relaxation of isolated IFIMAR (CONICET-UNMdP) Mar del Plata, - PowerPoint PPT Presentation

ignacio garca-mata Relaxation of isolated IFIMAR (CONICET-UNMdP) Mar del Plata, Argentina quantum systems School for advanced sciences of Luchon beyond chaos Quantum chaos: fundamentals and applications Session Workshop I (W1),


  1. ignacio garcía-mata Relaxation of isolated IFIMAR (CONICET-UNMdP) Mar del Plata, Argentina quantum systems School for advanced sciences of Luchon 
 beyond chaos Quantum chaos: fundamentals and applications 
 Session Workshop I (W1), March 14 - 21, 2015

  2. Buenos Aires Mar del Plata

  3. Isolated Quantum systems non equilibrium dynamics — relaxation & universality thermalization

  4. Eigenstate thermalization hypothesis smooth A nn = h n | ˆ A | n i (approx. constant) h A i t ⇡ h A i MC A nm = h n | ˆ A | m i very small Other mechanism: see C. Gogolin’s thesis

  5. H ( λ + δλ ) H ( λ ) → H ( λ + δλ ) quench H ( λ ) t τ 0 No Yes equilibrate? Yes No subsystem state independence bath state independence thermalize? diagonal form of eq. state thermal (Gibbs) state

  6. equilibrate?

  7. equilibrate? how? chaos?

  8. quantum Entropy von Neumann? S vN ( ρ ) = − Tr( ρ ln ρ )

  9. consistent with second law von Neumann entropy equilibrium S vN ( ρ ) = − Tr( ρ ln ρ ) diagonal entropy non-equilibrium X S D ( ρ ) = − ρ nn ln ρ nn external operations n Santos, Polkovnikov & Rigol, PRL 107 , 040601 (2011) Polkovnikov, Ann. Phys. 326 , 486 (2011)

  10. consistent with second law increases diagonal entropy conserved for adiabatic process X S D ( ρ ) = − ρ nn ln ρ nn n uniquely related to P(E) additive Santos, Polkovnikov & Rigol, PRL 107 , 040601 (2011) Polkovnikov, Ann. Phys. 326 , 486 (2011)

  11. Prob[ S D ( ρ 0 )] ≤ S D ( ρ τ )] ∼ 1 S dec − S D ( τ ) ≤ 1 − γ S dec = S D ( ρ ) γ = 0 . 5772 . . . Ikeda, Sakumichi, Polkovnikov, & Ueda. Ann. Phys 354 (2015) 338-352

  12. Prob[ S D ( ρ 0 )] ≤ S D ( ρ τ )] ∼ 1 S dec − S D ( τ ) ≤ 1 − γ S dec = S D ( ρ ) Ikeda, Sakumichi, Polkovnikov, & Ueda. Ann. Phys 354 (2015) 338-352

  13. Quench dynamics H ( λ ) H ( λ + δλ ) t τ 0 Cyclic process

  14. ρ ( τ ) = e − H 0 τ ρ 0 e iH 0 τ ρ 0 = | n 0 ih n 0 | H ( λ ) H ( λ + δλ ) t τ 0 X S D = − C n ( τ ) ln C n ( τ ) n S dec = S D ( ρ )

  15. equilibrium S dec − S D ( τ ) ∆ S D ( τ ) /S D ( τ )

  16. equilibrium S dec − S D ( τ ) → 1 − γ ∆ S D ( τ ) /S D ( τ ) ∆ S D ( τ ) /S D ( τ ) ⌧ 1

  17. two different models

  18. Dicke model λ √ 2 j ( a † + a )( J + + J − ) H ( λ ) = ω 0 J z + ω a † a + field superradiant transition λ c = 1 √ ω 0 ω 2 λ c = 0 . 5 ω 0 = ω = ~ = 1

  19. Dicke model Emary & Brandes, PRL 90 , 044101 (2003)

  20. Spin system H ( λ ) = H 0 + λ V L − 1 X i +1 + S y i S y J ( S x i S x i +1 + µS z i S z H 0 = i +1 ) i =1 L − 2 i +2 + S y i S y X J ( S x i S x i +2 + µS z i S z V = i +2 ) i =0

  21. Spin system Santos, Borgonovi & Izrailev, PRE 85 . 036209 (2012)

  22. Dicke 0.5 0.4 S dec − S D ( τ ) 0.3 6 4 0.2 S D 1 − γ 2 0.1 0 0 25 50 75 τ 0 | 10 i ∆ S D ( τ ) /S D ( τ ) 0.1 | 100 i | 500 i 0.01 | 1000 i 0 . 2 0 . 4 0 . 6 0 . 8 1 | 2000 i λ 0 j = 20 , N = 250 δλ = 0 . 1 λ c = 0 . 5

  23. λ 0 S dec − S D ∆ S D /S D | n 0 i

  24. λ 0 S dec − S D structure of initial state ∆ S D /S D | n 0 i

  25. 1 ξ = P m | h n ( λ ) | m ( λ + δλ ) i | 4 IPR B.V. Chirikov,F.M Izrailev and D.L. Shepelyansky Physica D 33 basis (1988) 77-88 Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. B 52, R11580 (1995). Ph. Jacquod and D. L. Shepelyansky, Phys. Rev. Lett. 75, 3501 (1995). complexity of eigenstates B. Georgeot and D. L. Shepelyansky, Phys. Rev. Lett. 79, 4365 (1997). 
 R. Berkovits and Y. Avishai, Phys. Rev. Lett. 80, 568 (1998). 
 V. V. Flambaum, A. A. Gribakina, G. F. Gribakin, and Localization M. G. Kozlov, Phys. Rev. A 50, 267 (19 
 … … … chaos … L. F. Santos F. Borgonovi, and F. M. Izrailev, PRE 85, 036209 (2012)

  26. Dicke model λ 0 1 0.5 0.1 ∆ S D ( τ ) /S D ( τ ) 0.4 S dec − S D ( τ ) 0.01 0.3 0.001 0.2 1 25 ξ 0.1 150 0 100 0 25 50 75 100 125 150 Energy 50 ξ 0 -50 0 1000 2000 3000

  27. Dicke model λ 0 1 0.5 0.1 ∆ S D ( τ ) /S D ( τ ) 0.4 S dec − S D ( τ ) 0.01 0.3 0.001 0.2 1 25 ξ 0.1 150 0 100 0 25 50 75 100 125 150 Energy 50 ξ 0 -50 0 1000 2000 3000

  28. Dicke model λ 0 1 0.5 0.1 ∆ S D ( τ ) /S D ( τ ) 0.4 S dec − S D ( τ ) 0.01 0.3 0.001 0.2 1 25 ξ 0.1 150 0 100 0 25 50 75 100 125 150 Energy 50 ξ 0 -50 0 1000 2000 3000

  29. Dicke model λ 0 1 0.5 0.1 ∆ S D ( τ ) /S D ( τ ) 0.4 S dec − S D ( τ ) 0.01 0.3 0.001 0.2 1 25 ξ 0.1 150 0 100 0 25 50 75 100 125 150 Energy 50 ξ 0 -50 0 1000 2000 3000

  30. Dicke model λ 0 1 0.5 0.1 ∆ S D ( τ ) /S D ( τ ) 0.4 S dec − S D ( τ ) 0.01 0.3 0.001 0.2 1 25 ξ 0.1 150 0 100 0 25 50 75 100 125 150 Energy 50 ξ 0 -50 0 1000 2000 3000

  31. Dicke model λ 0 1 0.5 0.1 ∆ S D ( τ ) /S D ( τ ) 0.4 S dec − S D ( τ ) 0.01 0.3 0.001 0.2 1 10 100 ξ 0.1 150 0 100 0 25 50 75 100 125 150 Energy 50 ξ 0 -50 0 1000 2000 3000

  32. Dicke model λ 0 1 0.5 0.1 ∆ S D ( τ ) /S D ( τ ) 0.4 S dec − S D ( τ ) (1 − γ ) ξ − 1 0.01 0.3 ξ + 1 0.001 0.2 1 10 100 ξ 0.1 150 0 100 0 25 50 75 100 125 150 Energy 50 ξ 0 -50 0 1000 2000 3000

  33. Dicke model λ < λ c λ 0 0.5 0.5 0.1 ∆ S D ( τ ) /S D ( τ ) 0.4 S dec − S D ( τ ) (1 − γ ) ξ − 1 0.01 0.3 ξ + 1 0.001 0.2 1 10 100 ξ 0.1 150 0 100 0 25 50 75 100 125 150 Energy 50 ξ 0 -50 0 1000 2000 3000

  34. Dicke model & spin system 0.5 0.1 ∆ S D ( τ ) /S D ( τ ) 0.4 S dec − S D ( τ ) (1 − γ ) ξ − 1 0.01 0.3 ξ + 1 0.001 0.2 1 10 100 ξ 0.1 0 0 25 50 75 100 125 150 ξ

  35. two different models equilibration and chaos isolated systems universal behavior complexity is key LDOS

  36. to be done S dec − S D ( τ ) = (1 − γ ) ξ − 1 ξ + 1

  37. to be done 100 ξ 10 1 0.0001 0.001 0.01 0.1 1 δλ

  38. to be done 100 100 ξ ξ 10 10 1 1 0.0001 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 δλ δλ

  39. to be done 100 100 ξ ξ 10 10 1 1 0.0001 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 δλ δλ B. Georgeot and D. L. Shepelyansky, Phys. Rev. Lett. 79, 4365 (1997).

  40. PRE 91 , 010902 (R) (2015) UBACYT Diego Wisniacki IGM & Augusto Roncaglia

  41. Thank you UBACYT

  42. questions Thank you

  43. 0.9 0.8 400 0.7 λ 0.6 Energy 0.5 200 0.4 0.3 0.2 0 0.1 0 2000 4000 6000 j = 20 , N = 250

Recommend


More recommend