relational proof interpretations
play

Relational Proof Interpretations Paulo Oliva Queen Mary University - PowerPoint PPT Presentation

Relational Proof Interpretations Paulo Oliva Queen Mary University of London Logic Colloquium Udine, 23 July 2018 Thanks to collaborators: Martn Escard, Thomas Powell, Gilda Ferreira, Jaime Gaspar, Dan Hernest proof interpretations


  1. Relational Proof Interpretations Paulo Oliva Queen Mary University of London Logic Colloquium Udine, 23 July 2018 Thanks to collaborators: Martín Escardó, Thomas Powell, Gilda Ferreira, Jaime Gaspar, Dan Hernest

  2. proof interpretations classical (Dialectica, realizability,…) proof (extended) Brouwer, proofs-as-programs Bishop, Griffin, Krivine, Herbelin, … Bridges,… constructive proof computer programs proofs-as-programs

  3. Plan relational approach • Part 1: Sets vs Relations 
 is more general ( intuitionistic logic ) • Part 2: Unification 
 interpretations (only) differ in treatment of ! A ( linear logic ) • Part 3: Games and Applications 
 ( classical logic ) higher-order games explain higher-order programs

  4. Part 1: Sets vs Relations ( realizability vs dialectica )

  5. n r ( s = t ) ≡ ( n = 0) ∧ ( s = t ) n r A ∧ B ≡ n 0 r A ∧ n 1 r B n r A ∨ B ≡ ( n 0 = 0 ∧ n 1 r A ) ∨ ( n 0 ≠ 1 ∧ n 1 r B ) n r A → B ≡ ∀ a ( a r A → { n }( a ) ↓ ∧ { n }( a ) r B ) n r ∃ z A ( z ) ≡ n 1 r A ( n 0 ) n r ∀ z A ( z ) ≡ ∀ x ({ n }( x ) ↓ ∧ { n }( x ) r A ( x )) Theorem (Kleene-Nelson). If HA ⊢ A then HA ⊢ n r A , for some numeral n

  6. Realizability A { n : n r A } ! { { set of realizers of A sentence

  7. Dialectica, vol. 12, 1958 x ∧ | B | w | A ∧ B | y , w x , v ≡ v | A | y x ) ∨ ( b ≠ 1 ∧ | B | w v ) | A ∨ B | y , w x , v , b ≡ ( b =0 ∧ | A | y | A → B | x , w ≡ → | B | w f , g x f ( x ) | A | g ( x , w ) | ∀ z A ( z )| y , s f ≡ f ( s ) | A ( s )| y | ∃ z A ( z )| y ≡ x , s x | A ( s )| y Theorem (Gödel). t for some term t ∈ T If HA ⊢ A then T ⊢ ∀ y | A | y

  8. Dialectica Interpretation x } ! A { ( x , y ) : | A | y { { sentence relation between arguments and counter-arguments

  9. Example α is eventually bounded α is bounded A ≡ ∃ n ∀ i ≥ n ( α ( i ) ≤ n ) → ∃ k ∀ j ( α ( j ) ≤ k ) f , g ≡ ( g ( n , j ) ≥ n → α ( g ( n , j )) ≤ n ) → α ( j ) ≤ f ( n ) | A | n , j = max{ n ,max { α ( i )| i < n }} f ( n ) = g ( n , j ) j

  10. so… which one is better, sets or relations? relational approach is more general Realizability can also be presented in a ‘relational’ style

  11. Kleene realizability n r A ∧ B ≡ n 0 r A ∧ n 1 r B n r A ∨ B ≡ ( n 0 = 0 ∧ n 1 r A ) ∨ ( n 0 ≠ 1 ∧ n 1 r B ) n r A → B ≡ ∀ a ( a r A → { n }( a ) ↓ ∧ { n }( a ) r B ) n r ∃ z A ( z ) ≡ n 1 r A ( n 0 ) n r ∀ z A ( z ) ≡ ∀ x ({ n }( x ) ↓ ∧ { n }( x ) r A ( x )) n r A iff Relational presentation ∀ a | A | a n n 0 ∧ | B | a 1 n 1 | A ∧ B | a ≡ n | A | a 0 n 1 ) ∨ ( n 0 ≠ 1 ∧ | B | a n 1 ) | A ∨ B | a n ≡ ( n 0 = 0 ∧ | A | a a 0 → ({ n }( a 0 ) ↓ ∧ | B | a 1 { n }( a 0 ) ) | A → B | a n ≡ ∀ b | A | b n 1 | ∃ z A ( z )| a ≡ n | A ( n 0 )| a { n }( a 0 ) | ∀ z A ( z )| a n ≡ { n }( a 0 ) ↓ ∧ | A ( a 0 )| a 1

  12. Kreisel modified realizability x , v mr A ∧ B ≡ x mr A ∧ v mr B x , v , b mr A ∨ B ≡ ( b =0 ∧ x mr A ) ∨ ( b ≠ 0 ∧ v mr B ) f mr A → B ≡ ∀ x ( x mr A → f ( x ) mr B ) x , s mr ∃ z A ( z ) ≡ x mr A ( s ) f mr ∀ z A ( z ) ≡ ∀ x ( f ( x ) mr A ( x )) Relational presentation x ∧ | B | w | A ∧ B | y , w ≡ x , v v | A | y x mr A x ) ∨ ( b ≠ 1 ∧ | B | w v ) | A ∨ B | y , w ≡ ( b =0 ∧ | A | y x , v , b iff x → | B | w | A → B | x , w ≡ ∀ y | A | y f f ( x ) ∀ y | A | y x | ∀ z A ( z )| y , s ≡ f f ( s ) | A ( s )| y | ∃ z A ( z )| y x , s ≡ x | A ( s )| y

  13. Gödel Dialectica interpretation x ∧ | B | w | A ∧ B | y , w x , v ≡ v | A | y x ) ∨ ( b ≠ 1 ∧ | B | w v ) | A ∨ B | y , w ≡ ( b =0 ∧ | A | y x , v , b A D ( x , y ) iff | A | y x | A → B | x , w f , g ≡ x → | B | w f ( x ) | A | g ( x , w ) | ∀ z A ( z )| y , s f ≡ f ( s ) | A ( s )| y | ∃ z A ( z )| y ≡ x , s x | A ( s )| y Kreisel modified realizability x ∧ | B | w | A ∧ B | y , w ≡ x , v v | A | y x ) ∨ ( b ≠ 1 ∧ | B | w v ) | A ∨ B | y , w x , v , b ≡ ( b =0 ∧ | A | y x mr A iff ∀ y | A | y x x → | B | w | A → B | x , w f ≡ ∀ y | A | y f ( x ) | ∀ z A ( z )| y , s ≡ f f ( s ) | A ( s )| y | ∃ z A ( z )| y ≡ x , s x | A ( s )| y P. Oliva, Unifying functional interpretations , NDJFL, 47 (2), 2006

  14. Part 2: Linear Logic ( it’s all about the bang! )

  15. Linear Logic A refinement of classical and intuitionistic logic A → B ! A ! B A & B A ∧ B A ⊗ B

  16. call-by-name translation call-by-value translation A ° ⊗ B ° A * & B * ( A ∧ B ) * ≡ ( A ∧ B ) ° ≡ ! A * ⊕ ! B * A ° ⊕ B ° ( A ∨ B ) * ≡ ( A ∨ B ) ° ≡ ! A * ! B * !( A ° ! B ° ) ( A → B ) * ≡ ( A → B ) ° ≡ ( ∀ z A ) * ≡ ∀ z A * ( ∀ z A ) ° ! ∀ z A ° ≡ ( ∃ z A ) ° ∃ z A ° ( ∃ z A ) * ≡ ∃ z ! A * ≡ LL ⊢ A ° IL ⊢ A LL ⊢ A *

  17. realizability ω ⊢ t mr A IL IL ⊢ A ( ⋅ ) * ( ⋅ ) * ω ⊢ ( t mr A ) * LL LL ⊢ A * ?

  18. Interpretation of Linear Logic x ⊗ | B | w | A ⊗ B | y , w x , v ≡ v | A | y x ) ⊕ ( b ≠ 1 &| B | w v ) | A ⊕ B | y , w x , v , b ≡ ( b =0 &| A | y x ) ⊕ ( b ≠ 1 &| B | w v ) ≡ x , v | A & B | y , w , b ( b =0 &| A | y ≡ f , g x f ( x ) | A ! B | x , w | A | g ( x , w ) ! | B | w based on earlier work of | ∀ z A ( z )| y , s f ≡ f ( s ) | A ( s )| y de Paiva and Shirahata | ∃ z A ( z )| y x , s ≡ x | A ( s )| y P. Oliva, Modified realizability interpretation of classical linear logic , LICS 2007 G. Ferreira and P. Oliva, Functional interpretations of intuitionistic linear logic , Logical Methods in Computer Science, 7(1), 2011

  19. modified realizability x mr A A ( ⋅ ) * ( ⋅ ) * ( x mr A ) * ⇔ ∀ y | A * | y x A * |! A | x ≡ ! ∀ y | A | y x interpretations (only) differ in treatment of ! A

  20. !A Trans. Interpretation |! A | x ≡ ! ∀ y | A | y Kreisel modified x ( ⋅ ) * or ( ⋅ ) ° realizability x ≡ ! ∀ y ∈ a | A | y Diller-Nahm x |! A | a ( ⋅ ) * or ( ⋅ ) ° interpretation x ≡ !| A | a Gödel’s Dialectica x |! A | a ( ⋅ ) * or ( ⋅ ) ° interpretation |! A | x ≡ ! ∀ y | A | y x ⊗ ! A modified realizability ( ⋅ ) ° with truth |! A | x ≡ ! ∀ y | A | y x ⊗ ! A q-variant of ( ⋅ ) * modified realizability x ≡ ! ∀ y ∈ a | A | y x ⊗ ! A Diller-Nahm ( ⋅ ) ° |! A | a with truth J. Gaspar and P. Oliva, Proof interpretations with truth , MLQ, 56(6):591-610, 2010

  21. Part 3: Applications ( classical logic and games )

  22. How about classical logic, arithmetic and analysis? law of excluded middle double negation elimination A ∨ ¬ A ¬¬ A → A pre-linearity Peirce’s law ( A → B ) ∨ ( B → A ) (( A → B ) → B ) → A Markov principle Drinker’s paradox ¬ ∀ nD ( n ) → ∃ n ¬ D ( n ) ∃ x ( D ( x ) → ∀ yD ( y )) finite choice ∀ n < k ∃ i A ( n , i ) → ∃ s ∀ n < k A ( n , s n )

  23. Gödel-Gentzen translation Kuroda translation ≡ ¬¬ P ≡ ( P ) G ( P ) K P A G ∧ B G A K ∧ B K ( A ∧ B ) G ≡ ( A ∧ B ) K ≡ ¬¬ ( A G ∨ B G ) A K ∨ B K ( A ∨ B ) G ≡ ( A ∨ B ) K ≡ A G → B G A K → B K ( A → B ) G ≡ ( A → B ) K ≡ ( ∀ z A ) G ≡ ∀ z A G ( ∀ z A ) K ≡ ∀ z ¬¬ A K ( ∃ z A ) G ≡ ¬¬ ∃ z A G ( ∃ z A ) K ≡ ∃ z A K IL ⊢ A G CL ⊢ A IL ⊢ ¬¬ A K G. Ferreira and P. Oliva, On the relation between various negative translations , Logic, Construction, Computation, vol 3, 227-258, 2012

  24. classical CL ⊢ A proof negative translation IL ⊢ A G + proof interpretation ∃ t ∈ T T ⊢ | A G | y t computer programs

  25. classical ∃ x X ∀ y R A ( x , y ) proof negative translation ¬¬ ∃ x X ∀ y R A ( x , y ) + proof ? interpretation program φ ( X → R ) → X ∀ p X → R A ( φ ( p ), p ( φ ( p ))) computer programs

  26. higher-order games explain player higher-order programs program φ ( X → R ) → X move outcome ∃ x X ∀ y R A ( x , y ) x is a good move game continuation given outcome y ∀ p X → R A ( φ ( p ), p ( φ ( p ))) optimal optimal move outcome M. Escardó and P. Oliva, Sequential games and optimal strategies , Proc. of the Royal Society A, 467:1519-1545, 2011

  27. Logical form Specifies ∃ x X ∀ y R A ( x , y ) player ∀ n ∃ x X ∀ y R A n ( x , y ) sequence of players finite choice finite game (bounded collection) unbounded game countable choice M. Escardó and P. Oliva, Selection functions, bar recursion, and backward induction , MSCS, 20 (2), pp .127-168, 2010 P. Oliva and T. Powell, A game-theoretic computational interpretation 
 of proofs in classical analysis , Gentzen's Centenary, 501-531, 2015

  28. Summary • Realizability also has a “relational” presentation • Relational presentation allows for interpretation of LL and unification (including truth variants) • Classical proofs dealt with by combining interpretation with a negative translation • Classical proof (and higher-order programs) can be “explained” in terms of higher-order games

Recommend


More recommend