recursive quantum
play

Recursive quantum algorithms for integrated linear optics Gelo - PowerPoint PPT Presentation

Recursive quantum algorithms for integrated linear optics Gelo Noel Tabia 28th CS Theory Days | 2-4 October 2015 Motivation Photons make excellent qubits (robust against decoherence). Universal, scalable quantum computing is possible


  1. Recursive quantum algorithms for integrated linear optics Gelo Noel Tabia 28th CS Theory Days | 2-4 October 2015

  2. Motivation • Photons make excellent qubits (robust against decoherence). • Universal, scalable quantum computing is possible with linear optics (KLM, cluster states) • Goal: recipe for translating quantum algorithms into a practical linear optical scheme

  3. Outline • Quantum circuits • Linear optics • Photonic integrated circuit • Quantum Fourier transform • Grover’s algorithm

  4. Qubit • 2-level quantum system 𝜔 = 𝛽 0 + 𝛾 1 = 𝛽 𝛽 2 + 𝛾 2 = 1 𝛾 , • Photon polarization, dual-rail qubit 0 0 1 1 vertical horizontal mode 1 mode 0

  5. Unitary gates • Norm-preserving linear operation 𝑉 𝛽 𝛾 ↦ 𝛿 𝛿 2 + 𝜀 2 = 1 𝜀 , • If 𝑉 is unitary then 𝑉𝑉 † = 𝑉 † 𝑉 = 𝐽

  6. Qubit gates • Single-qubit and 2 -qubit gates 𝐼 = 1 1 1 𝑈 = 1 0 𝑓 𝑗𝜌/4 1 −1 0 2 𝜌/8 -phase gate Hadamard gate 1 0 0 0 CNOT 𝑦 𝑧 0 1 0 0 CNOT = 0 0 0 1 = 𝑦 |𝑧 ⊕ 𝑦〉 0 0 1 0 Controlled-NOT gate

  7. Measurement • Orthogonal projectors onto subspaces Π 0 = 0 0 = 1 0 0 0 Pr 𝑘 = 𝜔 Π 𝑘 |𝜔〉 Π 1 = 1 1 = 0 0 𝜔 = 𝜔 † 0 1 • If 𝑄 𝑘 are measurement projectors 𝑄 𝑘 = 𝐽 𝑘

  8. Quantum circuit • Prepare input qubits • Apply sequence of quantum gates • Measure output qubits |𝜔 𝑜 〉 𝑉 𝜔 𝑜 Π 𝑗 |0〉

  9. Quantum algorithm • Quantum circuit family 𝐷 𝑜 : 𝐷 𝑜 is a quantum circuit for 𝑜 qubits • Consistent 𝜔 𝑜 ⊗ 0 ⊗𝑛 = C n 𝜔 𝑜 ⊗ 0 ⊗𝑛 𝐷 𝑜+𝑛 • Uniform: ∃ efficient algorithm for building 𝐷 𝑜 given 𝑜

  10. Qudits • 𝑒 -level quantum system 𝛽 𝛾 𝜔 = 1 1 1 𝐺 3 = 1 𝛿 𝜕 2 1 𝜕 3 𝜕 2 1 𝜕 0 Π 0 = 0 0 + 1 〈1| 1 Π 1 = 2 2 2 e.g. qutrit for 𝑒 = 3

  11. Linear optics (LO) • Photons manipulated by a network of beam splitters, phase shifters, mirrors e.g., Mach-Zehnder interferometer

  12. Phase shifter • Phase 𝜄 𝑄 𝜄 = 1 0 𝑓 𝑗𝜄 0 𝜄 = 2𝜌𝑀(𝑜 − 1)/𝜇 Phase 𝑓 𝑗𝜄 applied to amplitude in 𝜄 mode 2

  13. Beam splitter • Reflectivity 𝜗 1 − 𝜗 𝜗 𝜗 1 − 𝜗 𝐶 𝜗 = 1 − 𝜗 − 𝜗 𝜗 Photon in mode 1 stays there with probability 𝜗

  14. Photonic integrated circuit • Waveguide-based linear optics

  15. Universal LO processor Experimental tests Hadamard matrices • Boson sampling • J. Carolan et al. Science, 349, (2015) 711-716

  16. LO unitary gates • Any 𝑒 -dimensional unitary can be realized with a LO network on 𝑒 modes using 𝑒 2 − 1 elements • For arbitrary 𝑉 ∈ 𝑇𝑉 𝑒 , we need to specify 𝑒 2 − 1 real parameters. • Reck, et al. (1994):

  17. Our result • We describe recursive LO circuits for quantum Fourier transform and Grover inversion • We build the circuit for 2𝑒 modes using a pair of circuits for the same operation on 𝑒 modes. • Formally, we decompose unitaries into a product of block-diagonal matrices with adjacent 2 × 2 blocks

  18. Quantum Fourier transform • Discrete Fourier transform on quantum states 1 1 1 1 4 = 1 1 𝑗 −1 −𝑗 𝐺 1 −1 1 −1 4 1 −𝑗 −1 𝑗

  19. Recursive QFT circuit • QFT for 𝑒 = 8 given the circuit for 𝐺 4 Swap operator, same as 𝐶 0

  20. LO for QFT • Let Σ denote the permutation 1,2, … , 2𝑒 ↦ (1, 𝑒 + 1,2, 𝑒 + 2, … . , 𝑒, 2𝑒) • Let Σ −1 be the inverse of Σ . • Let 𝑄 𝜄 𝑘 be a phase shift 𝜄 on mode 𝑘 . • Let 𝐶 𝜗 (𝑗, 𝑘) denote a beam splitter with reflectivity 𝜗 on modes 𝑗, 𝑘 .

  21. Constructing 𝐺 2𝑒 given 𝐺 𝑒 1) LO circuit for Σ −1 2) Apply 𝐺 𝑒 on modes 1 to 𝑒 and 𝐺 𝑒 on modes 𝑒 + 1 to 2𝑒 3) Use the following phase shifters: 𝑒 (𝑒 + 2) ,…, 𝑄 𝑙𝜌 (𝑒 + 𝑙 + 1) ,…, 𝑄 (𝑒−1)𝜌 𝑄 𝜌 (2𝑒) 𝑒 𝑒 4) LO circuit for Σ. 5) Use the following beam splitters: 2 (3,4) ,…, 𝐶 1 𝐶 1 2 1,2 , 𝐶 1 2 (2𝑒 − 1,2𝑒) 6) LO circuit for Σ −1

  22. Fourier matrix factorization • First discovered by Gauss, this is the basis for fast Fourier transform 𝐺 𝑒 0 𝐽 𝐸 𝐺 𝑒 Σ −1 𝐺 2𝑒 = 0 𝐸 𝐽 𝐸 = diag(1, 𝜕, … , 𝜕 𝑒 )

  23. Search problem • For unsorted database search • Given black box for 𝑔: 0,1 𝑜 → 0,1 • Find an 𝑦 s.t. 𝑔(𝑦) = 1 , if any. • Classically, Ω(𝑜) queries are needed. • In the quantum case, 𝑃 𝑜 are sufficient

  24. Grover iterate 𝑔 : 𝑦 ↦ −1 𝑔(𝑦) 𝑦 • Oracle 𝑉 • Let 𝑇: 𝑦 ↦ − 𝑦 , 𝑦 ≠ 0 0 ↦ 0 • Define Grover inversion (GI) 𝑋 = 𝐼 ⊗𝑜 𝑇𝐼 ⊗𝑜 = 2 𝜔 𝜔 − 𝐽 1 • Grover iterate 𝜔 : = 2 𝑜 |𝑦〉 𝑦 𝐻 = 𝑋𝑉 𝑔

  25. Grover’s algorithm 𝐻 = 𝑋𝑉 𝑔 • We construct a recursive LO circuit for Grover inversion 𝑋 𝑒

  26. LO for unitary 𝑊 𝑒 • First, define family of unitaries 𝑊 𝑒 : • LO circuit for 𝑊 4

  27. Recursive 𝑊 𝑒 circuit • For 𝑒 = 8 given the circuit for 𝑊 4

  28. Constructing 𝑊 2𝑒 given 𝑊 𝑒 1) Apply 𝑊 𝑒 on modes 1 to 𝑒 and 𝑊 𝑒 on modes 𝑒 + 1 to 2𝑒 . 2) LO circuit for Σ. 3) Use the following beam splitters: 2 (3,4) ,…, 𝐶 1 𝐶 1 2 1,2 , 𝐶 1 2 (2𝑒 − 1,2𝑒) 4) LO circuit for Σ −1 .

  29. LO for Grover inversion • LO circuit for 𝑋 4 −1 1 1 1 4 = 1 1 −1 1 1 𝑋 1 1 −1 1 2 1 1 1 −1

  30. Recursive 𝑋 𝑒 circuit 8 given the circuit for 𝑋 4 and 𝑊 • 𝑋 4

  31. Constructing 𝑋 2𝑒 given 𝑋 𝑒 1) Apply 𝑋 𝑒 on modes 1 to 𝑒 and 𝑋 𝑒 on modes 𝑒 + 1 to 2𝑒 . 2) Apply 𝑊 𝑒 on modes 1 to 𝑒 and 𝑊 𝑒 on modes 𝑒 + 1 to 2𝑒 . 3) Let Φ be the permutation that exchanges mode 1 and mode 𝑒 + 1 . Use the LO circuit for Φ . 4) Apply 𝑊 𝑒 on modes 1 to 𝑒 and 𝑊 𝑒 on modes 𝑒 + 1 to 2𝑒 .

  32. 𝑒 matrix decomposition 𝑋 • Our scheme implies the factorization 2𝑒 = 𝑊 0 𝑒 Φ 𝑊 0 𝑋 0 𝑒 𝑒 𝑒 𝑋 0 𝑊 0 𝑊 0 𝑋 𝑒 𝑒 𝑊 0 𝑒 𝑊 2𝑒 = 𝐼 ⊗ 𝐽 𝑒 0 𝑊 𝑒 2 = 0 1 where 𝑋 2 = 𝐼 . 0 , 𝑊 1

  33. Simulation 8-item Grover search

  34. LO circuit for 𝑄 8 • Prepares an equal superposition state

  35. Simulation results • Fidelity 𝑔 = 〈theo|expt〉 𝑂 = 10 7 𝜈 = 0.871 𝜏 = 0.059 Error model 4% on BS reflectivities • 5% absorption loss in PS •

  36. Open problems • Recursive LO circuit for other interesting unitaries, e.g., 𝑉 𝑏 : 𝑡 ↦ 𝑡𝑏 (mod 𝑂) , 0 ≤ 𝑡 < 𝑂 • Given some unitary U what is the minimum number of optical elements needed for its LO circuit?

Recommend


More recommend