rectangling panoramic images
play

Rectangling Panoramic Images via Warping Kaiming He Huiwen Chang - PowerPoint PPT Presentation

Rectangling Panoramic Images via Warping Kaiming He Huiwen Chang Jian Sun Microsoft Research Asia Tsinghua University Microsoft Research Asia Introduction Panoramas are irregular Introduction Panoramas are irregular Rectangles


  1. Rectangling Panoramic Images via Warping Kaiming He Huiwen Chang Jian Sun Microsoft Research Asia Tsinghua University Microsoft Research Asia

  2. Introduction • Panoramas are irregular

  3. Introduction • Panoramas are irregular • Rectangles are favored panoramas in panoramas in

  4. Introduction • Panoramas are irregular • Rectangles are favored • “ Rectangling ” the panoramas

  5. Introduction • Panoramas are irregular • Rectangles are favored • “ Rectangling ” the panoramas – Cropping

  6. Introduction • Panoramas are irregular • Rectangles are favored • “ Rectangling ” the panoramas – Cropping – Inpainting content-aware fill

  7. Introduction • Panoramas are irregular • Rectangles are favored • “ Rectangling ” the panoramas – Cropping – Inpainting content-aware fill

  8. Introduction • Panoramas are irregular • Rectangles are favored • “ Rectangling ” the panoramas – Cropping – Inpainting – Warping new our warping

  9. distortion Why Warping? • Panoramas are often distorted

  10. Why Warping? • Panoramas are often distorted • Warping can be unnoticeable our warping

  11. Why Warping? • Panoramas are often distorted [Igarashi et al, SIGGRAPH 05] … • Warping can be unnoticeable • Warping is robust – shape manipulation – image retargeting [Carroll et al, SIGGRAPH 09] … [Wang et al, SIGGRAPH Asia 08] … – image projection – video stabilization [Liu et al, SIGGRAPH 09] …

  12. Why Warping? • Panoramas are often distorted • Warping can be unnoticeable • Warping is robust • Rectangling via warping

  13. Challenges ? • Meshing – irregular input – boundary conditions

  14. Challenges • Meshing – irregular input ? – boundary conditions • Content-preserving – boundary constraints – shapes – straight lines

  15. Solution: Local + Global local warping mesh warped back global warping

  16. Local Warping • Mesh-free

  17. longest missing Local Warping boundary • Mesh-free • Seam Carving [Avidan & Shamir 07] known pix missing

  18. seam Local Warping shift • Mesh-free • Seam Carving [Avidan & Shamir 07] – insert a seam – shift pixels

  19. seam Local Warping shift • Mesh-free • Seam Carving [Avidan & Shamir 07] – insert a seam – shift pixels • Seam Carving = Warping

  20. Local Warping • Mesh-free • Seam Carving [Avidan & Shamir 07] – insert a seam – shift pixels • Seam Carving = Warping seam carving (A video was removed when converting this ppt to pdf.)

  21. Local Warping • Mesh-free • Seam Carving [Avidan & Shamir 07] – insert a seam – shift pixels • Seam Carving = Warping grid mesh

  22. Local Warping • Mesh-free • Seam Carving [Avidan & Shamir 07] – insert a seam – shift pixels • Seam Carving = Warping warped back

  23. Global Warping • Mesh optimization min 𝐹(𝑊) 𝑊 : all vertexes

  24. Global Warping • Mesh optimization – Boundary constraints 𝐹 𝐶 𝑊 : hard data term

  25. Global Warping • Mesh optimization as- similar -as- – Boundary constraints possible – Shape preservation [Igarashi et al, SIGGRAPH 05] [Liu et al, SIGGRAPH 09] [Wang et al, SIGGRAPH 10] … 𝐹 𝑇 𝑊 = 𝑊 𝑈 𝑀𝑊 𝑀 : Laplacian smoothness term in warping

  26. input boundary + shape detected lines boundary + shape + line [PAMI 10]

  27. Line Preservation • Lines in the same direction are rotated by the same 𝜄 [Chang & Chuang, CVPR 12] in a block detected lines

  28. direction 𝑗 Line Preservation • Lines in the same direction are rotated by the same 𝜄 [Chang & Chuang, CVPR 12] direction 𝑘 quantized directions (50 bins)

  29. direction 𝑗 Line Preservation • Lines in the same direction 𝜄 𝑗 are rotated by the same 𝜄 [Chang & Chuang, CVPR 12] 𝜄 direction 𝑘 𝑘 warped

  30. Line Preservation warp 𝒇 • Lines in the same direction 𝒗 are rotated by the same 𝜄 [Chang & Chuang, CVPR 12] • Bind lines to mesh 𝒗 𝒇 𝑾 rotate 𝜾 bilinear 𝐹 𝑀 𝑊, 𝜄 = 𝑊 𝑈 𝑀 𝜄 𝑊 𝑀 𝜄 : Laplacian

  31. Global Warping 𝐹 𝑊, 𝜄 = 𝐹 𝐶 + 𝐹 𝑇 + 𝐹 𝑀 • Mesh optimization – Boundary constraints – Shape preservation fix 𝜄 – Line preservation update 𝑊 – Total energy fix 𝑊 update 𝜄

  32. Global Warping • Target rectangle input normalized bounding box scaling x : y ≈ 1:1

  33. Results input

  34. Results warp

  35. Results input

  36. Results warp

  37. Results input

  38. Results warp crop content-aware fill

  39. Results input

  40. Results warp

  41. Results zoom-in output

  42. Results zoom-in input

  43. Results 16-Mp CPU 1-core 2s

  44. Failure input

  45. Failure warp

  46. Conclusion • New concept - rectangling via warping • Unnoticeable, robust, and fast

Recommend


More recommend