recent works on joint distributions involving the poupard
play

Recent works on joint distributions involving the Poupard and - PowerPoint PPT Presentation

Recent works on joint distributions involving the Poupard and Entringer statistics Guoniu Han IRMA, Strasbourg (Based on some joint papers with Dominique Foata) Shanghai Jiao Tong University June 25, 2018 1 Enumerative Combinatorics


  1. Recent works on joint distributions involving the Poupard and Entringer statistics Guoniu Han IRMA, Strasbourg (Based on some joint papers with Dominique Foata) Shanghai Jiao Tong University June 25, 2018 1

  2. • Enumerative Combinatorics • Generating Function A = ( A 0 , A 1 , A 2 , . . . ) : sequence of sets f : statistic on A • Problem ( A ; f ) : compute x f ( a ) ? � F n ( x ) = a ∈ A n 2

  3. • “Each generating function problem ( A ; f ) produces a math- ematics research paper ?” • No. It depends the hardness of the problem: —— (easy) —— (interesting) —— (hard) —— > Only problems that are neither easy nor hard produce research papers. • It is difficult to find a interesting problem ( A ; f ) , since most generating function problems are easy, or hard. • A trick for finding interesting problem ? Yes. 3

  4. • 2D - Generating Function (and 3D, 4D, ...) A = ( A 0 , A 1 , A 2 , . . . ) : sequence of sets f, g : statistics on A • Problem ( A ; f, g ) : compute x f ( a ) y g ( a ) ? � F n ( x, y ) = a ∈ A n 4

  5. • If two 1D problems ( A , f ) and ( A , g ) are easy, then, the 2D problem ( A ; f, g ) is: (1) easy, (2) interesting, (3) hard? • Answer. Undefined: (1) or (2) or (3). • 2D-Principle . Although the answer is undefined, the prob- ability of “ ( A ; f, g ) is an interesting problem” is much bigger than a random problem ( B ; h ) . 5

  6. Christiane Poupard Deux propri´ et´ es des arbres binaires ordonn´ es stricts, Europ. J. Combin. 1989 (TangentTree, eoc) (TangentTree, pom) R. C. Entringer A combinatorial interpretation of the Euler and Bernoulli num- bers, Nieuw. Arch. Wisk., 1966 (Alt, first) 6

  7. Foata-Han Finite Difference Calculus for Alternating Permutations, Jour- nal of Difference Equations and Applications, 2013 (Alt; grn) • g.f. for n odd sec( x + y ) cos( x − y ) • g.f. for n even sec 2 ( x + y ) cos( x − y ) 7

  8. Tree Calculus for Bivariate Difference Equations, Journal of Difference Equations and Applications, 2014 (TangentTree; eoc, pom) • g.f. for the lower triangle cos(2 x ) + cos(2 y ) cos(2 z ) 2 cos 2 � � x + y + z • g.f. for the upper triangle sin(2 x ) sin(2 z ) 2 cos 2 � � x + y + z 8

  9. Seidel Triangle Sequences and Bi-Entringer Numbers, European Journal of Combinatorics, 2014 (Alt; first, last) • g.f. for n even, upper triangle cos x cos z cos( x + y + z ) • g.f. for n even, lower triangle sin x sin z cos( x + y + z ) • g.f. for n odd, lower and upper triangles sin x cos z cos( x + y + z ) 9

  10. Andr´ e Permutation Calculus; a Twin Seidel Matrix Sequence, Sem. Loth. Comb. 2016, 54 pages (AndreI; first, nexttolast) (AndreII; last, grn) • A. n even, upper triangle cos x cos z sin( x + y + z ) cos 2 ( x + y + z ) • A. n even, lower triangle cos( x + y + z ) + sin x cos( x + y ) cos x sin z cos 2 ( x + y + z ) 10

  11. • A. n odd, upper triangle cos x cos z cos 2 ( x + y + z ) • A. n odd, lower triangle cos( x + y ) cos( y + z ) cos 2 ( x + y + z ) • B. n even, upper triangle sin x cos z cos 2 ( x + y + z ) • B. n even, lower triangle cos( x + y ) sin( y + z ) cos 2 ( x + y + z ) 11

  12. • B. n odd, upper triangle sin x cos z sin( x + y + z ) cos 2 ( x + y + z ) • B. n odd, lower triangle cos( x + y + z ) + cos x cos( x + y ) sin x sin z − cos 2 ( x + y + z ) 12

  13. Entringer-Poupard Matrices, Submitted, 2016 (Alt; last, grn) • upper triangle (sin x + cos x ) sin(2 z ) cos 2 ( x + y + z ) • lower triangle (sin x + cos x ) cos( x + y − z ) cos 2 ( x + y + z ) 13

  14. Secant Tree Calculus, Central European Journal of Mathe- matics, 2014 (SecantTree; eoc, pom) • g.f. for the upper triangle: cos(2 y ) + 2 cos(2( x − z )) − cos(2( z + x )) 2 cos 3 ( x + y + z ) • g.f. for the lower triangle : 14

  15. Secant Tree Calculus, Central European Journal of Mathemat- ics, 2014 (SecantTree; eoc, pom) • g.f. for the upper triangle: cos(2 y ) + 2 cos(2( x − z )) − cos(2( z + x )) 2 cos 3 ( x + y + z ) • g.f. for the lower triangle : hard ? Open problem ! 15

  16. Tangent numbers Taylor expansion of tan u : u 2 n +1 � tan u = (2 n + 1)! T 2 n +1 n ≥ 0 1!1 + u 3 3! 2 + u 5 5! 16 + u 7 7! 272 + u 9 = u 9! 7936 + · · · The coefficients T 2 n +1 ( n ≥ 0) are called the tangent numbers 16

  17. Secant numbers Taylor expansion of sec u : u 2 n 1 � sec u = cos u = (2 n )! E 2 n n ≥ 0 = 1 + u 2 2! 1 + u 4 4! 5 + u 6 6! 61 + u 8 8! 1385 + u 10 10! 50521 + · · · The coefficients E 2 n ( n ≥ 0) are called the secant numbers 17

  18. Alternating permutations D´ esir´ e Andr´ e’s (1879): A permutation σ = σ (1) σ (2) · · · σ ( n ) of 12 · · · n with the property that σ (1) > σ (2) , σ (2) < σ (3) , σ (3) > σ (4) , etc. in an alternating way is called alternating permutation . Let A n denote the set of all alternating permutations of 12 · · · n . Theorem: # A 2 n − 1 = T 2 n − 1 , # A 2 n = E 2 n . 18

  19. Tangent tree 5 9 7 8 ❆ ✁✁ ❆ ✁✁ ❆ ❆ P P 3 P � P 4 6 P ✥� ❅✥✥✥✥✥✥✥ ❅ 2 1 2 n + 1 vertices, complete, binary, rooted, planar, labeled, increasing The set all off tangent trees : T 2 n +1 . # A 2 n +1 = # T 2 n +1 = T 2 n +1 19

  20. Secant tree 5 8 7 ❆ ✁✁ ❆ ❆ ❆ P P 3 P � 4 P 6 P ✥� ❅✥✥✥✥✥✥✥ ❅ 2 1 2 n vertices, complete (execpt that the rightmost vertice is missing), binary, rooted, planar, labeled, increasing The set all off tangent trees : T 2 n . # A 2 n = # T 2 n = E 2 n . 20

  21. Bijection 5 7 5 8 7 ❅ � ❅ � ❅ 3 ❅ � ❅ � ❅ t 1 = t 2 = ❍ ❍ ✟ ❍ ❍ ✘✟✟ � 4 4 3 6 6 ✘� ❍ ❍ ❅✘✘✘✘✘ ❅✘✘✘✘✘ ❅ ❅ 2 2 1 1 σ 1 = 6 1 5 4 7 2 3 σ 2 = 6 1 5 4 8 2 7 3 Tangent, secant trees and alternating permutations 21

  22. Poupard statistic: eoc Poupard (1989) Let 1 = a 1 → a 2 → a 3 → · · · → a j − 1 → a j be the minimal chain of a tree t ∈ T n , the “end of the minimal chain” of t is defined to be eoc( t ) := a j . 5 9 7 8 ❆ ✁✁ ❆ ✁✁ ❆ ❆ P P 3 P � 4 P 6 ✥� P ❅✥✥✥✥✥✥✥ ❅ 2 1 For example, the minimal chain of the tree t is 1 → 2 → 3 → 7 , so that eoc( t ) = 7 22

  23. Poupard statistic: pom If the leaf with the maximum label n is incident to a node labeled k , define its “parent of the maximum leaf” to be pom( t ) := k . 5 9 7 8 ❆ ✁✁ ❆ ✁✁ ❆ ❆ P P 3 P � P 4 6 ✥� P ❅✥✥✥✥✥✥✥ ❅ 2 1 The parent of its maximum leaf (equal to n = 9 ) is pom( t ) = 4 23

  24. 5 secant trees with 4 vertices 3 4 4 ◗◗◗◗ ◗◗◗◗ ✟ ✟ ❅ ❅ ✟ ✟ ❅ 4 3 4 ❅ 3 ❅ 3 4 2 ❅ ✟ ✟ ✟ 2 2 ❅✟✟ ❅✟✟ ❅✟✟ ❅ ❅ ❅ 2 2 3 ◗ 1 ◗ 1 1 1 1 4 1 3 2 3 1 4 2 4 2 3 1 3 2 4 1 2 1 4 3 eoc = 3 4 3 3 2 pom = 1 2 2 2 3 24

  25. 16 tangent trees with 5 vertices There 16 tangent trees from T 5 . Only 4 of them (reduced trees) are displayed, but each of them gives rise to three other tangent trees, having the same “eoc” and “pom” statistics, by pivoting each pair of subtrees. 4 5 4 5 3 5 3 5 ❅ � ❅ � ❅ � ❅ � 2 ❅ � 3 ❅ � 4 ❅ � 5 ❅ � ✟ ✟ ✟ ✟ ❅✟✟ ❅✟✟ ❅✟✟ ❅✟✟ ❅ ❅ ❅ ❅ 3 2 2 2 1 1 1 1 2 1 4 3 5 3 1 4 2 5 4 1 3 2 5 5 1 3 2 4 eoc = 2 4 3 3 pom = 3 2 2 1 25

  26. Equidistribution Theorem. The statistics “ eoc − 1 ” and “ pom ” are equidistributed on each set T n . The tangent tree case was obtained by Poupard (1989). Her original proof, not of combinatorial nature, makes use of a clever finite difference analysis argument. Our proof: Bijection inspired from the classical “jeu de taquin” on directed acyclic graphs, (Sch¨ utzenberger, 1972) 26

  27. Proof Let 1 = a 1 → a 2 → a 3 → · · · → a j − 1 → a j be the minimal chain of t . (i) for i = 1 , 2 , . . . , j − 1 replace each node label a i of the minimal chain by a i +1 − 1 ; (ii) replace the node label a j by n ; (iii) replace each other node label b by b − 1 . 6 7 9 6 9 8 5 4 8 7 4 5 3 2 2 3 1 1 eoc=6 pom=5 27

  28. Poupard numbers for tagent trees: g n ( k ) g n ( k ) := # { t ∈ T 2 n − 1 :pom( t ) = k } = # { t ∈ T 2 n − 1 :eoc( t ) = k + 1 } k = 1 2 3 4 5 6 7 Sum n = 1 1 1 = T 1 2 0 2 0 2 = T 3 3 0 4 8 4 0 16 = T 5 4 0 32 64 80 64 32 0 272 = T 7 Theorem (Poupard, 1989). x 2 n +1 − k y k − 1 ( k − 1)! = cos( x − y ) � � 1+ g n +1 ( k ) (2 n + 1 − k )! cos( x + y ) n ≥ 1 1 ≤ k ≤ 2 n +1 28

  29. Poupard numbers for secant trees: h n ( k ) h n ( k ) := # { t ∈ T 2 n :pom( t ) = k } = # { t ∈ T 2 n :eoc( t ) = k + 1 } k = 1 2 3 4 5 6 7 Sum n = 1 1 1 = E 2 2 1 3 1 5 = E 4 3 5 15 21 15 5 61 = E 6 4 61 183 285 327 285 183 61 1385 = E 8 Theorem (Foata-H., 2013). x 2 n +1 − k y k − 1 ( k − 1)! = cos( x − y ) � � 1+ h n +1 ( k ) cos 2 ( x + y ) (2 n + 1 − k )! n ≥ 1 1 ≤ k ≤ 2 n +1 29

Recommend


More recommend