recent results from the lhcf experiment
play

Recent Results from the LHCf experiment Gaku Mitsuka (Nagoya - PowerPoint PPT Presentation

Recent Results from the LHCf experiment Gaku Mitsuka (Nagoya University) on behalf of the LHCf Collaboration 17th International Seminar on High Energy Physics, QUARKS2012 Yaroslavl, Russia, 4-10 June, 2012 1 Outline Central Keywords:


  1. Recent Results from the LHCf experiment Gaku Mitsuka (Nagoya University) on behalf of the LHCf Collaboration 17th International Seminar on High Energy Physics, QUARKS2012 Yaroslavl, Russia, 4-10 June, 2012 1

  2. Outline Central Keywords: • (Ultra high energy) Cosmic rays Beam1 Beam2 • LHC IP Forward • Forward particle productions • Introduction and Physics motivation • Status of LHCf • Photon event analyses - Photon analyses at √ s=900GeV and 7TeV - π 0 analysis at √ s=7TeV • Capability of p-Pb run in 2012 • Conclusions and Future prospects 2

  3. K.Fukatsu, Y.Itow, K.Kawade, T.Mase, K.Masuda, Y.Matsubara, G.Mitsuka, K.Noda,T.Sako, K.Suzuki, K.Taki Solar-Terrestrial Environment Laboratory, Nagoya University Y.Muraki(Spokes person) K.Kasahara, M.Nakai, Y.Shimizu, S.Torii K.Yoshida Konan University Waseda University Shibaura Institute of Technology T.Tamura Kanagawa University O.Adriani, L.Bonechi, M.Bongi, R.D’Alessandro, M.Grandi, H.Menjo, P .Papini, S.Ricciarini, G.Castellini, A. Viciani INFN, Univ. di Firenze A.Tricomi INFN, Univ. di Catania A-L.Perrot W.C.Turner CERN LBNL, Berkeley M.Haguenauer J.Velasco, A.Faus Ecole Polytechnique IFIC, Centro Mixto CSIC-UVEG 3

  4. K.Fukatsu, Y.Itow, K.Kawade, T.Mase, K.Masuda, Y.Matsubara, G.Mitsuka, K.Noda,T.Sako, K.Suzuki, K.Taki Solar-Terrestrial Environment Laboratory, Nagoya University Y.Muraki(Spokes person) K.Kasahara, M.Nakai, Y.Shimizu, S.Torii K.Yoshida Konan University Waseda University Shibaura Institute of Technology T.Tamura Kanagawa University Totally ~30 collaborators O.Adriani, L.Bonechi, M.Bongi, R.D’Alessandro, M.Grandi, H.Menjo, P .Papini, S.Ricciarini, G.Castellini, A. Viciani INFN, Univ. di Firenze A.Tricomi INFN, Univ. di Catania A-L.Perrot W.C.Turner CERN LBNL, Berkeley M.Haguenauer J.Velasco, A.Faus Ecole Polytechnique IFIC, Centro Mixto CSIC-UVEG 3

  5. Energy spectra of high energy cosmic rays 4 10 -1 2 ) X max Fly´s Eye X max (g/cm sr GeV sec) LEAP - satellite proton HiRes-MIA Proton - satellite 2 10 Yakutsk 1993 2 (1 particle/m -sec) 800 Yakustk - ground array Yakutsk 2001 CASA-BLANCA Haverah Park - ground array HEGRA-AIROBICC -1 Akeno - ground array 10 700 SPASE-VULCAN Fe 2 AGASA - ground array Flux (m DICE Proton Fly's Eye - air fluorescence 600 -4 HiRes1 mono - air fluorescence 10 HiRes2 mono - air fluorescence Iron DPMJET 2.5 HiRes Stereo - air fluorescence 500 neXus 2 -7 10 Auger - hybrid QGSJET 01 SIBYLL 2.1 400 Knee -10 10 2 (1 particle/m -year) 10 14 10 15 10 16 10 17 10 18 10 19 10 20 E lab (eV) 14TeV -13 10 ) -1 Yakustk - ground array sec Haverah Park - ground array Akeno - ground array 0.9TeV -1 AGASA - ground array sr Fly's Eye - air fluorescence HiRes1 mono - air fluorescence -2 m HiRes2 mono - air fluorescence HiRes stereo - air fluorescence -16 2 10 (eV Auger - hybrid 24 10 J(E)/10 GZK cuto fg ? 3 E -19 10 7TeV 1 Ankle -22 10 2 (1 particle/km -year) Direct Indirect -25 -1 10 10 18 19 20 17 21 10 10 10 10 10 Energy (eV) 2 (1 particle/km -century) Energy, Composition, & direction -28 10 → Source of cosmic ray 9 10 13 15 16 18 19 20 11 12 14 17 10 10 10 10 10 10 10 10 10 10 10 10 → Structure of the universe (goal) Energy (eV) 4

  6. Indirect measurement of cosmic rays • It is not possible to directly* measure cosmic rays above 10 14 eV, but possible γ p Fe indirectly using the cascade shower of daughter particles, Extensive Air- Shower(EAS). Altitude [km] • Composition and energy of cosmic rays a fg ect the generation of EAS. • Then understanding of high-energy cosmic ray owes to the indirect technique: comparison between the MC simulation of EAS and observation. • Largest systematic uncertainty of indirect measurement is caused by the finite Radius [km] understanding of the hadronic interaction of cosmic ray in atmosphere. * direct measurement of cosmic ray <10 14 eV is done by balloon, satellite, and ISS. 5

  7. Hadronic interactions for CR physics CERN-LHCC-2006-004, 2008 JINST 3 S08006. Model uncertainty on X max Underlying theories • pQCD (but mainly for large p T ) • Gribov-Regge approach (soft QCD) 1 inela Underlying phenomenologies d σ 1 • String fragmentation F ad-hoc A 0.1 d σ dX • Beam remnants ad-hoc B X F • Di fg raction dissociation 0.01 • Nuclear e fg ects 0.01 0.1 1 Many models exist for CR physics X F • QGSJET (S. Ostapchenko) 1e+08 • EPOS (K. Werner and T. Pierog) Vertical shower Number of Electrons • etc... ad-hoc A 1e+07 What should be measured by LHCf ?? ad-hoc B 1. Energy spectra of γ , π 0 and n 2. Transverse momentum (p T ) spectra X max (A) X max (B) 3. E CMS (in)dependence of the spectra 1e+06 200 300 400 500 600 700 800 900 1000 4. Nuclear e fg ects 2 Vertical Depth (g/cm ) 6

  8. The LHCf detectors • Zero degree instrumentation slot at 140m away from IP1(ATLAS). CMS / TOTEM • p-p collision at √ s=14TeV corresponds to E lab =10 17 eV. 26.7km • Detectors are located at the best position to measure the large energy flow that strongly ALICE LHCb contributes the air-shower development. ATLAS / LHCf Scintillation fibers (Scifi) Arm1 Arm1 1ch~1mm 140m Silicon strip detector Arm2 Arm2 1ch~160 µ m 7

  9. Status of the LHCf experiment Physics program at CERN R&D for 14TeV run 2004, 2006, and 2007 2009, 2010 • Calibration at SPS • Beam test of GSO scintillator at 組み立ての様子 HIMAC (JAPAN, Chiba) (NIM A 671 (2012) 129–136) (JINST 6 T0900 (2011)) 2008 2011, 2012(Jun.) • First data taking at 900GeV (only FC) • Beam test of the LHCf Arm1 detector 2009 with GSO scintillator at HIMAC • First data taking at 900GeV (JAPAN, Chiba) 2010 • Physics program at 900GeV/7TeV was completed (Luminosity : JINST 7 T01003 (2012) 2012(Aug.-Sep.) 7TeV photon : Phys. Lett. B 703 128-134 (2011)) • Post-calibration at SPS • Beam test of the LHCf Arm1 detector with GSO scintillator at CERN-SPS 2012 • Possibly p-Pb run ? (CERN-LHCC-2011-015 ; LHCC-I-021) 8

  10. Status of the LHCf experiment Physics program at CERN R&D for 14TeV run 2004, 2006, and 2007 2009, 2010 • Calibration at SPS • Beam test of GSO scintillator at 組み立ての様子 HIMAC (JAPAN, Chiba) (NIM A 671 (2012) 129–136) (JINST 6 T0900 (2011)) 2008 2011, 2012(Jun.) • First data taking at 900GeV (only FC) • Beam test of the LHCf Arm1 detector 2009 with GSO scintillator at HIMAC • First data taking at 900GeV (JAPAN, Chiba) 2010 • Physics program at 900GeV/7TeV was completed (Luminosity : JINST 7 T01003 (2012) 2012(Aug.-Sep.) 7TeV photon : Phys. Lett. B 703 128-134 (2011)) • Post-calibration at SPS • Beam test of the LHCf Arm1 detector with GSO scintillator at CERN-SPS 2012 • Possibly p-Pb run ? (CERN-LHCC-2011-015 ; LHCC-I-021) 8

  11. Photon event analysis 9

  12. Photon analysis at √ s=900GeV Submitted to PLB. Cross section of the LHCf detectors • Photon like events are categorized into two pseudo-rapidity ranges: Beam pipe shadow Beam pipe shadow - η >10.15 - 8.77< η <9.46 • Unavoidable PID ine ffj ciency and impurity are corrected in each bin. • Integral luminosity ~ 0.3nb -1 , and uncertainty is 21% (invisible). • Independent data analyses show an Arm1 Arm2 overall good agreement within their systematic uncertainties. Arm1 data vs Arm2 data Preliminary Preliminary 10

  13. Photon analysis at √ s=900GeV Submitted to PLB. Cross section of the LHCf detectors • Photon like events are categorized  ✓ θ ◆� into two pseudo-rapidity ranges: η = − ln tan Beam pipe shadow Beam pipe shadow 2 - η >10.15 - 8.77< η <9.46 • Unavoidable PID ine ffj ciency and impurity are corrected in each bin. • Integral luminosity ~ 0.3nb -1 , and uncertainty is 21% (invisible). • Independent data analyses show an Arm1 Arm2 overall good agreement within their systematic uncertainties. Arm1 data vs Arm2 data Preliminary Preliminary 10

  14. Photon analysis at √ s=900GeV Submitted to PLB. Cross section of the LHCf detectors • Photon like events are categorized into two pseudo-rapidity ranges: Beam pipe shadow Beam pipe shadow - η >10.15 - 8.77< η <9.46 • Unavoidable PID ine ffj ciency and impurity are corrected in each bin. • Integral luminosity ~ 0.3nb -1 , and uncertainty is 21% (invisible). • Independent data analyses show an Arm1 Arm2 overall good agreement within their systematic uncertainties. Arm1 data vs Arm2 data Preliminary Preliminary 11

  15. Photon analysis at √ s=900GeV Submitted to PLB. Cross section of the LHCf detectors • Photon like events are categorized into two pseudo-rapidity ranges: Beam pipe shadow Beam pipe shadow - η >10.15 - 8.77< η <9.46 • Unavoidable PID ine ffj ciency and impurity are corrected in each bin. • Integral luminosity ~ 0.3nb -1 , and uncertainty is 21% (invisible). • Independent data analyses show an Arm1 Arm2 overall good agreement within their systematic uncertainties. Arm1 data vs Arm2 data Preliminary Preliminary 12

  16. Photon analysis at √ s=900GeV Submitted to PLB. Combined data (Arm1 and Arm2) vs MC simulations Preliminary Preliminary • None of interaction models perfectly reproduce the LHCf data. • EPOS and SIBYLL(x~2) show a reasonable agreement with the LHCf data. • DPMJET, QGSJET and PYTHIA are in good agreement E γ <200GeV, but harder above 200GeV → E CMS dependent or independent ? 13

Recommend


More recommend