recent advances in biomolecular nmr
play

Recent Advances in Biomolecular NMR Lucia Banci CERM University of - PowerPoint PPT Presentation

Recent Advances in Biomolecular NMR Lucia Banci CERM University of Florence Recent Advances in Biomolecular NMR Protonless NMR for the characterization of Unfolded proteins, Large protein assemblies, Paramagnetic systems I n cell


  1. Recent Advances in Biomolecular NMR Lucia Banci CERM – University of Florence

  2. Recent Advances in Biomolecular NMR • Protonless NMR for the characterization of Unfolded proteins, Large protein assemblies, Paramagnetic systems • I n cell NMR For studying biomolecules in a cellular context • Combination of Solution and Solid State NMR For characterization of dynamic proteins and large aggregates • Mechanistic Systems Biology To describe and understand biological processes at molecular level

  3. Why protonless NMR? 15 N Inverse (i.e. through 1 H) detection of heteronuclei was a major advanchement!! 13 C Properties of 1 H (high g H , ..) 1 H  high 1 H sensitivity  /  large dipolar interactions  /  efficient relax processes (paramagnetic and large)  relatively low chemical shift dispersion (unfolded systems)

  4. 13 C direct detection … with increase in sensitivity, 15 N (high B 0 , cryo!) 13 C direct detection of heteronuclei (low  nuclei) becomes accessible 1 H Isotopic enrichment necessary anyway 13 C direct detection is a complementary tool

  5. 13 C direct detection, protonless NMR 15 N A complementary tool for challenging systems 13 C - paramagnetic proteins 1 H - very large proteins - parts of proteins affected by exchange processes - unfolded systems - high salt concentrations

  6. C ´ direct detection – The experiments Set of exclusively heteronuclear experiments based on C ´ and C a detection for sequence specific assignment of a protein More complete information   automation Solution & solid state NMR   common/complementary

  7. C ´ direct detection - IPAP IP AP SUM DIFF Set-up on 13 C- 15 N labeled Alanine Nielsen N.C., Thøgersen H., Sørensen O.W., J. Am. Chem. Soc. , 1995 , 117 , 11365-6 Ottiger M., Delaglio F., Bax A., J. Magn. Reson. , 1998 , 131 , 373-378 Info on the spiltting!! Andersson P., Weigelt J., Otting G., J. Biomol. NMR , 1998 , 12 , 435-441  RDC!!! Duma L., Hediger S., Lesage A., Emsley L., J. Magn. Reson , 2003 , 164 , 187-195 Hu K., Eletsky A. Pervushin K., J. Biomol. NMR , 2003 , 26 , 69 Bertini I., Felli I.C., Kümmerle R., Luchinat C., Pierattelli R., J. Biomol. NMR , 2004 , 30 , 245-251

  8. C ´ direct detection – CON-IPAP CON d( 15 N) C ´ i -N i+1 Transfer pathway: F1(CO)  F3(N,t 1 )  F1(CO,t 2 ) d( 13 C ´ ) Correlations observed: N i -C ´ i-1 CON-IPAP - The delays are:  = 9 ms,  1 = 25 ms,  = t 1 (0). The phase cycle is:  1 = x,-x;  2 = 2x,2(-x);  3 = 4x,4(-x);  IPAP (IP) = x;  IPAP (AP) = - y;  rec = x,(-x),x,(-x),(-x),x,(-x),x. Quadrature detection in the F 1 dimension is obtained by incrementing  1 in a States-TPPI manner.

  9. C ´ direct detection – CON-IPAP CON-IPAP 600 MHz Prototype cryoprobe optimized for 13 C sensitivity (S/N 1400:1) Reduced monomeric SOD (15 kDa) 161 out of the 163 expected correlations are resolved Bermel, W.; Bertini, I.; Felli, I. C.; Kümmerle, R.; Pierattelli, R. J.Magn.Reson. 2006 , 178 , 56-64.

  10. C ´ direct detection – CACO-IPAP CACO d( 13 C a ) C ´ i -C a i Transfer pathway: F1(C a , t 1 )  F1(CO,t 2 ) d( 13 C ´ ) Correlations observed: C a i -C ´ i CACO-IPAP - The delays are:  = 9 ms. The phase cycle is:  IPAP (IP)= x,-x and  rec = x,-x;  IPAP (AP)= -y, y and  rec = x, -x. Quadrature detection in the F 1 dimension is obtained by incrementing  1 in a States-TPPI manner.

  11. C ´ direct detection – CBCACO-IPAP CBCACO C ´ i -C b i d( 13 C a,b ) d( 13 C a ) C ´ i -C a i Transfer pathway: F1(C a / b , t 1 )  F1(C a , t 2 )  F1(CO,t 3 ) Correlations observed: C b i - C a i -C ´ i , C a i - C a i -C ´ i d( 13 C ´ ) CBCACO-IPAP - The delays are:  = 9 ms,  1 = 8 ms. The phase cycle is:  1 = x,-x;  2 = 8x,8(-x);  3 = 2y,2(-y);  IPAP (IP) = 4(x),4(-x);  IPAP (AP) = 4(-y),4(y);  rec = x,(-x),(-x),x,(-x),x,x,(-x). Quadrature detection in the F 1 and F 2 dimensions is obtained by incrementing  1 and  3 in a States-TPPI manner.

  12. C ´ direct detection – S 3 E CCCO C ´ i -C d i d( 13 C a,b,.. ) C ´ i -C  i d( 13 C a,b ) d( 13 C) Transfer pathway: F1(C ali , t 1 )  F1(C a , t 2 )  F1(CO,t 3 ) i - C a i -C ´ i , C a i - C a i -C ´ i Correlations observed: C ali C ´ i -C b i d( 13 C ´ ) CCCO-IPAP - The delays are:  = 9ms,  = t 1 (0). The phase cycle is:  1 = x, -x;  2 = 2x, 2(-x);  IPAP (IP) = 4x, 4(-x);  IPAP (AP) = 4(-y),4y;  rec = x, (- x), (-x), x, (-x), x, x, (-x). Quadrature detection in the F 1 and F 2 dimensions is obtained by incrementing  1 and  2 respectively in a States-TPPI manner.

  13. C ´ detection - Assignment strategy CCCON C ´ i -C d i CBCACON d( 13 C a,b,.. ) C ´ i -C b C ´ i -C  i i CACON d( 13 C a,b ) d( 13 C) d( 13 C a ) C ´ i -C a C ´ i -C a C ´ i -C b i i i Spin system identification d( 13 C ´ ) d( 13 C ´ ) d( 13 C ´ )

  14. CACO, CBCACO, CCCO-IPAP CACO-IPAP CBCACO-IPAP CCCO-IPAP 600 MHz Cryoprobe optimized for 13 C sensitivity (S/N 1400:1) 16 scans 2-3.5 hours the majority of the 13 C spin systems could be assigned Bermel W., Bertini I., Duma L., Felli I.C., Emsley L., Pierattelli R., Vasos P.R., Angew. Chem. , 2005 , 44 , 3089- 3092 Bermel, W., Bertini, I., Felli, I. C., Kümmerle, R., Pierattelli, R. J.Magn.Reson. 2006 , 178 , 56-64.

  15. C ´ detection - Assignment strategy CBCANCO C ´ i -C b i+1 C ´ i -C b COCON i d( 13 C a,b ) C ´ i -C ´ i+1 CANCO C ´ i -C a C ´ i -C a i+1 i+1 d( 13 C ´ ) C ´ i -C ´ i d( 13 C a ) C ´ i -C a C ´ i -C a C ´ i -C ´ i-1 i i Sequential assignment d( 13 C ´ ) d( 13 C ´ ) d( 13 C ´ )

  16. C ´ detection - Assignment strategy CBCACON-IPAP CCCON-IPAP D d ( 13 C’) D d ( 13 C’) @600 MHz CPTXO (S/N 1400:1) on 1.5 mM 13 C, 15 N labeled reduced monomeric SOD. CBCACON-IPAP, 16 scans, 3 days, CCCON-IPAP, 32 scans, 4.5 days. 96 % of the 13 C resonances could be identified Bermel W., Bertini I., Felli I.C., Kümmerle R., Pierattelli R., JMR , 2006 , 178 , 56-64

  17. C ´ detection - Assignment strategy PRO 74 LYS 75 Bermel, W., Bertini, I., Felli, I. C., Kümmerle, R., Pierattelli, R. J.Magn.Reson. 2006 , 178 , 56-64.

  18. One of the powerful applications of 13 C direct detection NMR Intrinsically disordered proteins - IDPs! Aggregated Folded

  19. ... Reduction in 1 H chemical shifts Cu(I)Zn(II)SOD 153 AA Synuclein 140 AA Well folded IDP

  20. 13 C carbonyl direct detection – IDPs 105 105 110 110 115 115 15 N chemical shift 120 15 N chemical shift 120 125 125 130 130 135 135 C ´ i-1 -N i H N 140 i -N i 140 145 145 9,2 9,0 8,8 8,6 8,4 8,2 8,0 7,8 7,6 7,4 178 177 176 175 174 173 172 171 170 1 H chemical shift 13C chemical shift Zhang, H., Neal, S., Wishart, D.S., J. Biomol. NMR 2003 , 25 , 173-195 Schwarzinger S., Kroon G.J., Foss T.R., Chung J., Wright P.E., Dyson H.J., J. Am. Chem. Soc. 2001 , 123 , 2970-2978

  21. CON of intrinsically unfolded a -synyclein All residues assigned (N,C ´ ,C a ,C b ) Prolines are visible Bermel W., Bertini I., Felli I.C., Lee Y.M., Luchinat C., Pierattelli R., J. Am. Chem. Soc. , 2006 , 128 , 3918-3919

  22. Intrinsically unfolded a -synyclein Strips from the 3D COCON-IPAP Sequence specific assignment 3D CBCACON-IPAP 3D COCON-IPAP Bermel W., Bertini I., Felli I.C., Lee Y.M., Luchinat C., Pierattelli R ., J. Am. Chem. Soc. , 2006 , 128 , 3918-3919

  23. Securin – Intrinsically disordered protein Interphase Prophase Prometaphase Metaphase Anaphase Telophase Cytokinesis Securin inhibitor of separase Metaphase Anaphase Securin Intrinsically disordered protein (IDP!) 202 AA (>10% PROs)

  24. Intrinsically unfolded human securin Securin – 202 AA, 24 PRO GLY (N) GLY (N) 9 corr obs 11 corr obs PRO (N) Observed well resolved peaks: 22 corr obs CON: 165 HSQC: 122 82% of the expected 68% of the expected 82% of the whole protein 60% of the whole protein Csizmok V., Felli I., Tompa P., Banci L., Bertini I., J. Am. Chem. Soc., 2009 , 130, 16873-16879

  25. Intrinsically unfolded human securin Securin – 202 AA, 24 PRO Correlations observed: C a i ,C ´ i ,N i+1 C b i , C ´ i ,N i+1 193, out of the 201 expected, spin patterns are identified (96%) in CBCACON-IPAP. Csizmok V., Felli I., Tompa P., Banci L., Bertini I., J. Am. Chem. Soc., 2009 , 130, 16873-16879

  26. Assignment and chemical shift analysis of securin a -helical secondary structure propensity for the stretch D 150 -F 159 Csizmok V., Felli I., Tompa P., Banci L., Bertini I., J. Am. Chem. Soc., 2009 , 130, 16873-16879

  27. Human securin - other NMR observables D 150 -F 159 , E 113 -S 127 and W 174 -L 178 Csizmok V., Felli I., Tompa P., Banci L., Bertini I., J. Am. Chem. Soc., 2009 , 130, 16873-16879

  28. 13 C direct detection – Speeding up?  Can one implement all the tricks to reduce experimental time? -Longitudinal relaxation enhancement Decrease the recycle delay -Reduction in datapoints acquired in indirect dimensions

  29. 13 C direct detection – Speeding up Longitudinal relaxation enhancement 1 H-start, 1 H-flip Diercks, T.; Daniels, M.; Kaptein, R. J.Biomol.NMR 2005 , 33 , 243-259. Deschamps, M.; Campbell, I. D. J.Magn Reson. 2006 , 178 , 206-211. Schanda, P.; Brutscher, B. J.Am.Chem.Soc. 2005 , 127 , 8014-8015. Müller, L. J.Biomol.NMR 2008 , 42 , 129-137. Bermel, W., Bertini I., Felli I.C., Pierattelli, R., J. Am. Chem. Soc. , 2009 , 131, 15339-15345

Recommend


More recommend