ranking patterns of unfolding models of codimension one
play

Ranking patterns of unfolding models of codimension one Hidehiko - PowerPoint PPT Presentation

Recent developments on geometric and algebraic methods in Economics August 24, 2014 Hokkaido University Ranking patterns of unfolding models of codimension one Hidehiko Kamiya (Nagoya University) Joint work with H. Terao and A. Takemura This


  1. K = K v of unfolding model • Getting back to the unfolding model, we can write K = u + col W as K = K v with v := u − proj col W ( u ) { I m − W ( W T W ) − 1 W T } = u . 37

  2. V : x 1 + ... + x m = 0 u v K = u + col W = K v 0 c ol W 38

  3. RP UF ( µ 1 , . . . , µ m ) = RP(v( µ 1 , . . . , µ m )) • v is a function of µ 1 , . . . , µ m : v = v( µ 1 , . . . , µ m ) . • We can write RP UF ( µ 1 , . . . , µ m ) as RP UF ( µ 1 , . . . , µ m ) = { ( i 1 · · · i m ) : K v( µ 1 ,..., µ m ) ∩ C i 1 ··· i m ̸ = ∅} = RP(v( µ 1 , . . . , µ m )) . 39

  4. Stability of RP(v( µ 1 , . . . , µ m )) • m -tuple ( µ 1 , . . . , µ m ) changes just a little, → v = v( µ 1 , . . . , µ m ) and thus K v change just a little, → the braid slice by K v remains exactly the same. • ( µ 1 , . . . , µ m ) changes beyond a certain extent, → the braid slice changes. 40

  5. K v ’ � K v C 213 C 213 C 123 D ’ v ’ C 231 C 231 v D C 321 C 312 C 321 41

  6. v ̸ = 0 Stability of RP(˜ v ) , ˜ • Let’s investigate the stability of the braid v ̸ = 0 , in general. slices RP(˜ v ) , ˜ 42

  7. Table of Contents 1. Introduction 2. Unfolding as a braid slice 3. All braid slices 4. Unrealizable braid slices 5. Number of ranking patterns 6. Inequivalent ranking patterns 7. Concluding remarks 43

  8. 3 All braid slices • We will investigate the stability of the braid slices RP(˜ v ) , ˜ v ̸ = 0 , and find all (different) braid slices. 44

  9. All-subset arrangement A m • First, define the all-subset arrangement A m in V by A m := { H I : I ⊂ { 1 , . . . , m } , 1 ≤ | I | ≤ m − 1 } , ∑ H I := { ( x 1 , . . . , x m ) T ∈ V : x i = 0 } ⊂ V. i ∈ I 45

  10. m =3: V : x 1 + x 2 + x 3 =0 3 x 3 = 0 ( x 1 + x 2 = 0) H { 3 } = H { 1,2 } x 1 = 0 ( x 2 + x 3 = 0) x 2 = 0 ( x 1 + x 3 = 0) H { 2 } = H { 1,3 } H { 1 } = H { 2,3 } 46

  11. Chambers of A m • Let Ch ( A m ) := { chambers D of A m } . D 47

  12. Generic braid slices • We only consider RP(˜ v ) for “regular” ˜ v : ∪ ⊔ v ∈ V \ ˜ H = D. H ∈A m D ∈ Ch ( A m ) • We will say the braid slices are “generic” in this case. 48

  13. v ) , ∀ ˜ v ∈ D RP D := RP(˜ • For ˜ v ’s in a chamber D ∈ Ch ( A m ) , RP(˜ v ) are the same: v ∈ D. RP(˜ v ) : the same for all ˜ We can define RP D := RP(˜ v ) , ˜ v ∈ D . • For different chambers D and D ′ , RP(˜ v ) changes: RP D ̸ = RP D ′ for D ̸ = D ′ . 49

  14. ~ ~ ~ ~ K v ’ � K v C 213 C 213 C 123 D ’ v ’ C 231 C 231 v D C 321 C 312 C 321 50

  15. { chambers of A m } ↔ { generic braid slices } • Therefore, ✓ ✏ Proposition: { D } ↔ { RP D } We have a bijection Ch ( A m ) → { RP D : D ∈ Ch ( A m ) } , D �→ RP D = RP(˜ v ∈ D. v ) , ˜ ✒ ✑ 51

  16. v( µ 1 , . . . , µ m ) ∈ V \ ∪ H ∈A m H • Let’s get back to the unfolding model. • We can show ∪ ⊔ v( µ 1 , . . . , µ m ) ∈ V \ H = D. H ∈A m D ∈ Ch ( A m ) D v ( µ 1 ,..., µ m ) 52

  17. RP(v( µ 1 , . . . , µ m )) : generic • Thus, RP UF ( µ 1 , . . . , µ m ) = RP(v( µ 1 , . . . , µ m )) is a generic braid slice: RP UF ( µ 1 , . . . , µ m ) = RP D for D ∋ v( µ 1 , . . . , µ m ) . 53

  18. D v ( µ 1 ,..., µ m ) 54

  19. D not attained by v( · , . . . , · ) • However, not all D ∈ Ch ( A m ) can be attained by v( · , . . . , · ) . • Hence, { r.p.’s of unfoldings } � { generic braid slices } . • Not all generic braid slices can be realized by the unfolding model. 55

  20. ~ ~ ~ K v C 213 C 123 C 231 C 132 v C 321 C 312 RP( v ) = { (213), (231), (321), (312) } 56

  21. D not attained by v( · , . . . , · ) • We have to identify D s which can/cannot be attained by v( · , . . . , · ) . 57

  22. Table of Contents 1. Introduction 2. Unfolding as a braid slice 3. All braid slices 4. Unrealizable braid slices 5. Number of ranking patterns 6. Inequivalent ranking patterns 7. Concluding remarks 58

  23. 4 Unrealizable braid slices • We will identify D ∈ Ch ( A m ) which cannot be attained by v( · , . . . , · ) , and thereby identify unrealizable braid slices RP D . 59

  24. Image of v( · , . . . , · ) • We can show im v := { v( µ 1 , . . . , µ m ) : generic µ 1 , . . . , µ m ∈ R m − 2 } is given by ⊔ im v = D D ∈ Ch ( A m ) , D ̸ = − D 1 ,..., − D m where − D 1 , . . . , − D m ∈ Ch ( A m ) are − D i := { v ∈ V : v i < 0 , v j > 0 for all j ̸ = i } . 60

  25. m =3: V : x 1 + x 2 + x 3 =0 3 ( x 3 < 0, x 1 , x 2 > 0) − D 3 x 3 = 0 ( x 1 + x 2 = 0) H { 3 } = H { 1,2 } − D 1 − D 2 ( x 1 < 0, x 2 , x 3 > 0) ( x 2 < 0, x 1 , x 3 > 0) x 2 = 0 ( x 1 + x 3 = 0) x 1 = 0 ( x 2 + x 3 = 0) H { 2 } = H { 1,3 } H { 1 } = H { 2,3 } 61

  26. Unrealizable braid slices • Therefore, ✓ ✏ Theorem: Unrealizable braid slices RP D cannot be realized by the unfolding model if and only if D = − D i for some i = 1 , . . . , m. ✒ ✑ 62

  27. Unrealizable braid slices • That is, exactly RP − D 1 , . . . , RP − D m are unrealizable braid slices. 63

  28. m =3: V : x 1 + x 2 + x 3 =0 3 ( x 3 < 0, x 1 , x 2 > 0) − D 3 x 3 = 0 ( x 1 + x 2 = 0) H { 3 } = H { 1,2 } − D 1 − D 2 ( x 1 < 0, x 2 , x 3 > 0) ( x 2 < 0, x 1 , x 3 > 0) x 2 = 0 ( x 1 + x 3 = 0) x 1 = 0 ( x 2 + x 3 = 0) H { 2 } = H { 1,3 } H { 1 } = H { 2,3 } 64

  29. ~ ~ ~ K v C 213 C 123 C 231 C 132 v C 321 C 312 RP( v ) = { (213), (231), (321), (312) } 65

  30. Table of Contents 1. Introduction 2. Unfolding as a braid slice 3. All braid slices 4. Unrealizable braid slices 5. Number of ranking patterns 6. Inequivalent ranking patterns 7. Concluding remarks 66

  31. 5 Number of ranking patterns • So far, we have seen { r.p.’s of unfoldings } � { generic braid slices } ↕ { chambers of A m } and { generic braid slices } \ { r.p.’s of unfoldings } = { RP − D 1 , . . . , RP − D m } . 67

  32. Main result 1 ✓ ✏ Theorem: Number of r.p.’s The number q ( m ) of ranking patterns of unfolding models of codimension one with m objects is q ( m ) = |{ chambers of A m }| − m. ✒ ✑ 68

  33. q ( m ) , m ≤ 8 ✓ ✏ Corollary: q ( m ) for m ≤ 8 For m ≤ 8 , we have q (3) = 3 , q (4) = 28 , q (5) = 365 , q (6) = 11286 , q (7) = 1066037 , q (8) = 347326344 . ✒ ✑ 69

  34. Table of Contents 1. Introduction 2. Unfolding as a braid slice 3. All braid slices 4. Unrealizable braid slices 5. Number of ranking patterns 6. Inequivalent ranking patterns 7. Concluding remarks 70

  35. 6 Inequivalent ranking patterns • Let’s consider the case where we ignore difference by a permutation of objects. • We consider two ranking patterns are essentially the same if they are just the relabelings of the objects of each other. • What is the number of essentially different ranking patterns of unfolding models of codimension one? 71

  36. Equivalence of ranking patterns • Let S m be the symmetric group on m letters (all bijections σ : { 1 , . . . , m } → { 1 , . . . , m } ). • We will say RP D and RP D ′ are equivalent : RP D ∼ RP D ′ if and only if RP D = σ RP D ′ , ∃ σ ∈ S m , where σ RP D ′ := { ( σ ( i 1 ) · · · σ ( i m )) : ( i 1 · · · i m ) ∈ RP D ′ } . 72

  37. Action of S m on Ch ( A m ) • Consider the action of S m on Ch ( A m ) : S m × Ch ( A m ) ∋ ( σ, D ) �− → σD ∈ Ch ( A m ) , where σD := { σ v : v ∈ D } with σ v := ( v σ − 1 (1) , . . . , v σ − 1 ( m ) ) T for v = ( v 1 , . . . , v m ) T . 73

  38. ⇒ O ( D ) = O ( D ′ ) RP D ∼ RP D ′ ⇐ • We can check RP σD = σ RP D . • Thus, ⇒ D = σD ′ , ∃ σ ∈ S m RP D ∼ RP D ′ ⇐ (i.e., O ( D ) = O ( D ′ ) ), where O ( D ) := { σD : σ ∈ S m } is the S m -orbit containing D . 74

  39. ⇒ O ( D ) = O ( D ′ ) RP D ∼ RP D ′ ⇐ • Therefore, the number of inequivalent braid slices RP D , D ∈ Ch ( A m ) , is equal to |{ S m -orbits of Ch ( A m ) }| . 75

  40. Orbit of excluded chambers • On the other hand, the excluded m chambers − D 1 , . . . , − D m constitute one orbit O ( − D m ) = {− D 1 , . . . , − D m } . 76

  41. Number of inequivalent ranking patterns • Therefore, ✓ ✏ Proposition: # of inequivalent r.p.’s The number of inequivalent ranking pat- terns of unfolding models of codimension one is |{ S m -orbits of Ch ( A m ) }| − 1 . ✒ ✑ 77

  42. |{ S m -orbits of Ch ( A m ) }| • Our job is to count |{ S m -orbits of Ch ( A m ) }| . 78

  43. { F ∈ Ch ( A m ∪ B m ) : F ⊂ C 1 ··· m } • There is a one-to-one correspondence { F ∈ Ch ( A m ∪ B m ) : F ⊂ C 1 ··· m } ← → { S m -orbits of Ch ( A m ) } given by F �− → O ( D F ) , where D F := unique D ∈ Ch ( A m ) such that F ⊂ D for F ∈ Ch ( A m ∪ B m ) . 79

  44. F ↔ O ( D F ) , m = 3 m =3: m =3: 3 x 2 = x 1 x 2 = x 1 3 C 123 3 D F 3 F F x 3 = x 1 x 2 = x 3 x 3 = x 1 x 2 = x 3 F ’ x 3 =0 ( x 1 + x 2 = 0) x 3 =0 ( x 1 + x 2 = 0) x 3 =0 ( x 2 =0 ( x 1 + x 3 = 0) x 2 =0 ( x 1 + x 3 = 0) x 1 =0 ( x 2 + x 3 = 0) x 1 =0 ( x 2 + x 3 = 0) ( D F ) | ( D F ) | =3 F { S m -orbits of Ch ( A m ) } = {O ( D F ) , O ( D F ′ ) } . 80

  45. |{ S m -orbits of Ch ( A m ) }| • Since | Ch ( B m ) | = | S m | = m ! , we obtain |{ S m -orbits of Ch ( A m ) }| = |{ F ∈ Ch ( A m ∪ B m ) : F ⊂ C 1 ··· m }| = | Ch ( A m ∪ B m ) | . m ! 81

  46. Main result 2 ✓ ✏ Theorem: # of inequivalent r.p.’s The number q IE ( m ) of inequivalent rank- ing patterns of unfolding models of codi- mension one is q IE ( m ) = | Ch ( A m ∪ B m ) | − 1 . m ! ✒ ✑ 82

  47. q IE ( m ) , m ≤ 9 ✓ ✏ Corollary: q IE ( m ) for m ≤ 9 For m ≤ 9 , we have q IE (3) = 1 , q IE (4) = 3 , q IE (5) = 11 , q IE (6) = 55 , q IE (7) = 575 , q IE (8) = 16639 , q IE (9) = 1681099 . ✒ ✑ 83

  48. Illustration: m = 4 • We illustrate our results when m = 4 . 84

  49. F ′ ⊂ C 1234 F, F ′ , ˜ F, ˜ • Chamber C 1234 : x 1 > x 2 > x 3 > x 4 of B 4 contains exactly 4 chambers F ′ ∈ Ch ( A 4 ∪ B 4 ) . F, F ′ , ˜ F, ˜ 85

  50. ~ ’ ∪ ~ ’ ’ ~ F ′ ⊂ C 1234 F, F ′ , ˜ F, ˜ x 1 > x 2 x 1 > x 2 4 4 4 x 2 > x 4 x 2 > x 4 x 1 + x 3 > 0 x 1 + x 2 > 0 x 3 > 0 ~ F ’ F C 1234 x 3 > x 4 x 3 > x 4 F x 1 > x 3 x 1 > x 3 F x 4 > 0 x 2 > x 3 x 2 > x 3 x 1 + x 4 > 0 x 1 > 0 x 2 > 0 x 1 > x 4 x 1 > x 4 C 1234 : x 1 > x 2 > x 3 > x 4 F , , , ⊂ C 1234 F F F (intersection with the unit sphere S 2 in V ≃ R 3 ) 86

  51. ~ ’ x 1 > x 2 x 2 > x 4 x 1 + x 3 > 0 x 1 + x 2 > 0 x 3 > 0 ~ F ’ F x 3 > x 4 F x 1 > x 3 F x 4 > 0 x 2 > x 3 x 1 + x 4 > 0 x 1 > 0 x 2 > 0 x 1 > x 4 A 4 ∪ B 4 (intersection with the unit sphere S 2 in V ≃ R 3 ) 87

  52. F ′ ∈ Ch ( A 4 ) D F , D F ′ , D ˜ F , D ˜ • The chambers of A 4 containing F, F ′ , ˜ F, ˜ F ′ are D F = − D 4 : x 1 > 0 , x 2 > 0 , x 3 > 0 , D F ′ = D 1 : x 4 < 0 , x 3 < 0 , x 2 < 0 , D ˜ F = E : x 2 + x 3 > 0 , x 1 + x 3 > 0 , x 3 < 0 , F ′ = E ′ : x 3 + x 2 < 0 , x 4 + x 2 < 0 , x 2 > 0 . D ˜ 88

  53. ~ ~ ~ ~ F ′ ∈ Ch ( A 4 ) D F , D F ′ , D ˜ F , D ˜ x 4 + x 2 < 0 x 2 > 0 x 2 + x 3 > 0 x 1 + x 3 > 0 F F ’ � x 3 < 0 x 3 + x 2 < 0 D =E ’ D =E F ’ � F x 3 > 0 x 0 F 4 < x 0 x 2 > 0 2 < x 1 > 0 F ’ x 0 3 < D = - D 4 D = D 1 F F ’ 89

  54. Cross section • These D F , D F ′ , D ˜ F , D ˜ F ′ constitute a complete set of representatives of the orbits: { S m -orbits of Ch ( A m ) } = {O ( D F ) , O ( D F ′ ) , O ( D ˜ F ) , O ( D ˜ F ′ ) } . 90

  55. Four inequivalent braid slices • Four inequivalent braid slices: RP D F = RP − D 4 , RP D F ′ = RP D 1 , RP D ˜ F = RP E , RP D ˜ F ′ = RP E ′ . – RP − D 4 : not realizable. – RP D 1 , RP E , RP E ′ : realizable. 91

  56. Three inequivalent r.p.’s of unfoldings • There are exactly three inequivalent ranking patterns RP D 1 , RP E , RP E ′ of unfolding models. 92

  57. Unrealizable RP − D 4 • Unrealizable braid slice: RP − D 4 = P 4 \ { (4123) , (4132) , (4213) , (4231) , (4312) , (4321) } . (“object 4 is never ranked first”) 93

  58. Realizable RP D 1 , RP E , RP E ′ • Realizable braid slices: RP D 1 = P 4 \ { (2341) , (2431) , (3241) , (3421) , (4231) , (4321) } , (“object 1 is never ranked last”) RP E = P 4 \ { (3412) , (3421) , (4312) , (4321) , (4132) , (4231) } , RP E ′ = P 4 \ { (3412) , (4312) , (3421) , (4321) , (3241) , (4231) } . 94

  59. 95

  60. Realizing unfolding models • The unfolding models realizing RP D 1 , RP E , RP E ′ are illustrated in the following figures ( µ 1 , µ 2 , µ 3 , µ 4 are written as 1 , 2 , 3 , 4 in the figures). 96

  61. RP D 1 (4213) (2413) (4123) (2143) (1423) Inadmissible (4132) (1243) rankings: (2134) (2341) (1432) (2431) 4 (1234) (3241) 1 (1342) (3421) (1324) (4231) 3 2 (4321) (2314) (4312) 1 (3142) 3 (3124) 4 (3214) 3 (3412) 4 4 1 2 2 3 2 97 1

  62. RP E 3 2 3 (3241) (3214) 4 (2341) (3124) (2431) 3 Inadmissible 3 (2314) 1 rankings: (1234) (2134) (3412) (3142) (2413) (3421) (2143) (1324) 2 (4312) (1243) (4321) (1342) 1 4 2 (4132) 4 (4231) (4213) (1432) (1423) (4123) 2 1 4 1 98

  63. RP E ′ (4132) (4213) (4123) Inadmissible 4 4 rankings: 1 (1243) (2413) (1432) (3412) (2143) (2431) 4 (1423) (4312) 3 (1234) (2341) 1 (2134) (3421) (1342) (1324) (4321) 2 3 (3241) 1 (3142) (4231) (2314) 3 (3124) 4 2 (3214) 1 2 2 3 99

Recommend


More recommend