r-Process nucleosynthesis in neutron star mergers with SkyNet Jonas Lippuner Luke Roberts, Rodrigo Fern´ andez, Francois Foucart, Matt Duez, Christian Ott NPCSM 2016, YTIP, Kyoto University, Kyoto, Japan November 9, 2016
Outline 1. r-Process recap 2. SkyNet 3. Parametrized r-process study 4. r-Process in accretion disk outflow 5. r-Process in NSBH dynamical ejecta (time permitting) 2 Jonas Lippuner
r-Process recap τ n ≪ τ β − ∼ 10 ms – 10 s 90 Zr 91 Zr 92 Zr 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 3 Jonas Lippuner
r-Process recap τ n ≪ τ β − ∼ 10 ms – 10 s 90 Zr 91 Zr 92 Zr 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 3 Jonas Lippuner
r-Process recap s-process: τ β − ≪ τ n ∼ 10 2 − 10 5 yr 90 Zr 91 Zr 92 Zr r-process: τ n ≪ τ β − ∼ 10 ms – 10 s 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 4 Jonas Lippuner
r-Process recap s-process: τ β − ≪ τ n ∼ 10 2 − 10 5 yr 90 Zr 91 Zr 92 Zr r-process: τ n ≪ τ β − ∼ 10 ms – 10 s 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 4 Jonas Lippuner
r-Process recap s-process: τ β − ≪ τ n ∼ 10 2 − 10 5 yr 90 Zr 91 Zr 92 Zr r-process: τ n ≪ τ β − ∼ 10 ms – 10 s 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 4 Jonas Lippuner
r-Process recap s-process: τ β − ≪ τ n ∼ 10 2 − 10 5 yr 90 Zr 91 Zr 92 Zr r-process: τ n ≪ τ β − ∼ 10 ms – 10 s 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 4 Jonas Lippuner
r-Process recap s-process: τ β − ≪ τ n ∼ 10 2 − 10 5 yr 90 Zr 91 Zr 92 Zr r-process: τ n ≪ τ β − ∼ 10 ms – 10 s 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 4 Jonas Lippuner
r-Process recap s-process: τ β − ≪ τ n ∼ 10 2 − 10 5 yr 90 Zr 91 Zr 92 Zr r-process: τ n ≪ τ β − ∼ 10 ms – 10 s 89 Y 84 Sr 86 Sr 87 Sr 88 Sr 85 Rb 87 Rb 78 Kr 80 Kr 82 Kr 83 Kr 84 Kr 86 Kr 79 Br 81 Br 74 Se 76 Se 77 Se 78 Se 80 Se 82 Se 75 As 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 69 Ga 71 Ga 66 Zn 67 Zn 68 Zn 70 Zn 65 Cu neutron drip line closed neutron shell 4 Jonas Lippuner
Solar system abundances 10 even A odd A 8 iron-peak log relative abundance (Si = 10 6 ) 6 N = 50 4 r s N = 82 N = 126 r s r s 2 0 Data credit: Katharina Lodders , ApJ 591, 1220 (2003) − 2 0 25 50 75 100 125 150 175 200 225 Mass number A 5 Jonas Lippuner
SkyNet ▸ General-purpose nuclear reaction network ▸ ∼ 8000 isotopes, ∼ 140,000 nuclear reactions ▸ Evolves temperature and entropy based on nuclear reactions ▸ Input: ρ ( t ) , initial composition, initial entropy or temperature ▸ Open source (soon) JL, Roberts 2016, in prep. 6 Jonas Lippuner
SkyNet Define abundance Y i = n i (1) . n B Consider reaction p + 7 Li → 2 4 He (2) with rate λ = λ ( T ,ρ ) . Then Y 4 He = 2 λ Y p Y 7 Li + ⋯ , ˙ Y p = − λ Y p Y 7 Li + ⋯ , ˙ Y 7 Li = − λ Y p Y 7 Li + ⋯ ˙ (3) 7 Jonas Lippuner
SkyNet reaction types Strong ▸ Ordinary: n + 196 Au → 197 Au (REACLIB, Cyburt+10) ▸ Neutron induced fission: n + 235 U → 118 Pd + 118 Pd (Panov+10, Mamdouh+01, Wahl02) ▸ Spontaneous fission: 301 Md → 121 Ag + 180 Xe (Frankel+47) Weak ▸ Beta decays: 86 Br → 86 Kr + e − + ¯ ν e (REACLIB, Fuller+82) ▸ Electron capture: 26 Al + e − → 26 Mg + ν e (REACLIB, Fuller+82) ▸ Neutrino interactions and e − /e + capture on free nucleons: n + ν e → p + e − (Arcones+02) ▸ λ ν e ∝ ∫ w ec dE E 2 ( E − Q ) 2 ( 1 − f e ) f ν e ∞ 8 Jonas Lippuner
SkyNet additional features Science ▸ Expanded Helmholtz equation of state ▸ Calculate nuclear statistical equilibrium (NSE) ▸ Calculate inverse rates from detailed balance to be consistent with NSE ▸ NSE evolution mode ▸ Implementing screening with chemical potential corrections Code ▸ Adaptive time stepping ▸ Python bindings ▸ Extendible reaction class ▸ Make movie with chart of nuclides 9 Jonas Lippuner
Parametrized r-process study 10 Jonas Lippuner
Parametrized r-process Lippuner & Roberts, 2015, ApJ, 815, 82, arXiv:1508.03133 Parameters 0 . 01 ≤ Y e ≤ 0 . 50 initial electron fraction 1 k B baryon − 1 ≤ s ≤ 100 k B baryon − 1 initial specific entropy 0 . 1ms ≤ τ ≤ 500ms expansion time scale Density profile 1 ⎧ Density ρ / ρ 0 ⎪ t ≤ 3 τ ⎪ 10 − 3 ⎪ ρ 0 e − t / τ ρ ( t ,τ ) = ⎨ t = 3 τ ⎪ 3 ⎪ ρ 0 ( 3 τ te ) t ≥ 3 τ ⎪ 10 − 6 ⎩ 10 − 9 10 − 3 10 − 2 10 − 1 10 1 10 2 10 3 1 Time t / τ Initial conditions ▸ Choose initial temperature T 0 = 6GK ▸ Find ρ 0 by solving for NSE at T 0 and Y e that produces specified s 11 Jonas Lippuner
Movies http://lippuner.ca/skynet/SkyNet_Ye_0.010_s_010.000_tau_007.100.mp4 http://lippuner.ca/skynet/SkyNet_Ye_0.250_s_010.000_tau_007.100.mp4 12 Jonas Lippuner
Final abundances vs. electron fraction 10 − 1 s = 10 k B baryon − 1 Y e = 0 . 01 Y e = 0 . 25 Lanthanides τ = 7 . 1ms Y e = 0 . 19 Y e = 0 . 50 10 − 2 Actinides Solar r-process 10 − 3 Relative final abundance 10 − 4 10 − 5 10 − 6 10 − 7 10 − 8 10 − 9 10 − 10 0 50 100 150 200 250 Mass number A 13 Jonas Lippuner
Final abundances vs. entropy 10 − 1 Y e = 0 . 19 s k B = 1 s k B = 10 Lanthanides τ = 7 . 1ms s k B = 3 . 2 s k B = 100 10 − 2 Actinides Solar r-process 10 − 3 Relative final abundance 10 − 4 10 − 5 10 − 6 10 − 7 10 − 8 10 − 9 10 − 10 0 50 100 150 200 250 Mass number A 14 Jonas Lippuner
Impact of electron fraction 0 10 X La 9 X Ac X La+Ac − 1 8 Number of fission cycles Number of fission cycles 7 − 2 s = 10 k B baryon − 1 6 τ = 1ms log X 5 − 3 4 3 − 4 2 1 − 5 0 0.0 0.1 0.2 0.3 0.4 0.5 Electron fraction Y e 15 Jonas Lippuner
Example light curves 10 42 Y e = 0 . 01 s = 10 k B baryon − 1 Y e = 0 . 13 τ = 7 . 1ms Y e = 0 . 25 M = 0 . 01 M ⊙ Luminosity, heating rate [erg s − 1 ] Luminosity Heating rate 10 41 10 40 10 39 0 5 10 15 Time [day] 16 Jonas Lippuner
r-Process in accretion disk outflow 17 Jonas Lippuner
Ejecta mass 10 − 3 M ⊙ 10 − 3 M ⊙ M ej [ 10 − 3 M ⊙ 10 − 3 M ⊙ ] M ej , Y e ≤ 0 . 25 [ 10 − 3 M ⊙ 10 − 3 M ⊙ ] τ [ms] τ M ej M ej , Y e ≤ 0 . 25 τ M ej M ej , Y e ≤ 0 . 25 0 1.8 1.36 10 1.9 1.07 30 3.3 0.83 100 7.8 0.52 300 18.0 0.67 ∞ 29.6 0.69 JL, Fern´ andez, Roberts, et al. 2016, in prep. 18 Jonas Lippuner
e distribution vs. HMNS lifetime Y Y e Y e 2.5 τ = 0 ms τ = 10 ms τ = 30 ms 2.0 τ = 100 ms τ = 300 ms Ejecta mass [10 − 3 M ⊙ ] τ = ∞ 1.5 1.0 0.5 0.0 0.1 0.2 0.3 0.4 0.5 Electron fraction Y e 19 Jonas Lippuner
Final abundances vs. HMNS lifetime τ = 0 ms τ = 30 ms 10 − 1 τ = 10 ms τ = 100 ms τ = 300 ms τ = ∞ ms Final mass × abundance ( M ej Y i ) 10 − 2 Solar r-process 10 − 3 10 − 4 10 − 5 10 − 6 0 50 100 150 200 250 Mass number A 20 Jonas Lippuner
τ = 300 ms ejecta properties τ = 300 τ = 300 1 . 5 2 M ej , − 3 ⊙ M ej , − 3 ⊙ 1 . 0 1 0 . 5 0 0 . 0 − 1 0.03 0.1 0.3 1 3 log v final [ c ] t 5GK [s] 2 . 0 − 2 M ej , − 3 ⊙ 1 . 5 1 . 0 0 . 5 − 3 100 s 5GK [ k B baryon − 1 ] 80 60 40 20 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 − 3 − 2 − 1 0 2 4 6 Y e, 5GK log v final [ c ] M ej , − 3 ⊙ 21 Jonas Lippuner
r-Process in NSBH dynamical ejecta 22 Jonas Lippuner
Neutron star–black hole merger 1. Full GR simulation of NS–BH Francois Foucart (LBL), Foucart+14 2. Ejecta in SPH code, Matt Duez (WSU) 3. Nucleosynthesis with SkyNet and varying neutrino luminosity JL and Luke Roberts (Caltech) Roberts, JL, Duez, et al. 2016, MNRAS in press , arXiv:1601.07942 Figure credit: F. Foucart 23 Jonas Lippuner
BHNS: Final abundances vs. neutrino luminosity 10 − 2 L ν e , 52 = 0 . 2 L ν e , 52 = 25 L ν e , 52 = 1 Solar r-process 10 − 3 Relative final abundance 10 − 4 10 − 5 10 − 6 10 − 7 10 − 8 0 50 100 150 200 250 Mass number A 24 Jonas Lippuner
Recommend
More recommend