quantum statistics
play

(quantum statistics) Classical statistical mechanics 1. - PowerPoint PPT Presentation

EE201/MSE207 Lecture 14 Particle distributions at 0 (quantum statistics) Classical statistical mechanics 1. Microcanonical ensemble = const (gas of particles distributed = const among energy/velocity levels) All


  1. EE201/MSE207 Lecture 14 Particle distributions at π‘ˆ β‰  0 (quantum statistics) Classical statistical mechanics 1. Microcanonical ensemble 𝑂 = const (gas of particles distributed 𝐹 = const among energy/velocity levels) All microstates are equally probable (postulate) 2. Canonical ensemble 𝑂 = const 𝐹 β‰  const (exchange of heat) 𝑄 𝐹 ∝ 𝑓 βˆ’πΉ/π‘ˆ Probability of a state ( 𝑙 𝐢 = 1, 𝑙 𝐢 π‘ˆ β†’ π‘ˆ ) big reservoir Follows from the postulate for microcaconical ensemble (this is how temperature is introduced)

  2. Classical statistical mechanics (cont.) 3. Grand canonical ensemble 𝑂 β‰  const (particles can penetrate) 𝐹 β‰  const Probability of a state 𝑄 𝐹, 𝑂 ∝ 𝑓 βˆ’(πΉβˆ’πœˆπ‘‚)/π‘ˆ (two parameters: temperature and chemical potential) Chemical potential 𝜈 : average energy cost of bringing an extra particle from big reservoir The formula for 𝑄(𝐹, 𝑂) also follows from equiprobability in microcanonical ens. From 𝑄(𝐹, 𝑂) we can derive π‘œ(𝜁) : average number of particles with energy 𝜁 π‘œ 𝜁 = exp βˆ’ 𝜁 βˆ’ 𝜈 𝐹 = 𝑗 π‘œ 𝜁 𝑗 𝜁 𝑗 Maxwell-Boltzmann distribution π‘ˆ 𝑄 𝑙 : probability to have 𝑙 particles with quantized (binned) energy 𝜁 Derivation 𝑓 βˆ’π‘™ πœβˆ’πœˆ /π‘ˆ 𝑙! ( 𝑙! comes from number of combinations) 𝑄 𝑙 = 𝑄 0 οƒž ∞ 𝑙=0 οƒž 𝑄 0 = 𝑄 𝑙 = 1 1 exp[exp(βˆ’(𝜁 βˆ’ 𝜈)/π‘ˆ)] 𝑙 = exp[βˆ’ (𝜁 βˆ’ 𝜈) π‘ˆ]

  3. Quantum statistics Main difference: indistinguishable particles (instead of a question β€œwhich one” we are only allowed to ask β€œhow many”) 1 12 2 Example: two particles classical 12 2 1 on two levels equal probabilities, 1/4 each I II quantum II I equal probabilities, 1/3 each Fermions Either 0 or 1 particle on a level with energy 𝜁 (spin increases number of levels, still no 2 particles on the same level) 𝑄 1 = 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ Still use classical relation 𝑄 𝐹, 𝑂 ∝ 𝑓 βˆ’ πΉβˆ’πœˆπ‘‚ /π‘ˆ 𝑄 0 1 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ β‡’ 𝑄 0 = 1 + 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ , 𝑄 1 = 1 + 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ , 𝑄 0 + 𝑄 1 = 1 1 Fermi-Dirac distribution β‡’ π‘œ = 𝑄 1 = (Fermi statistics) 1 + 𝑓 πœβˆ’πœˆ /π‘ˆ 𝜈 is Fermi level (chemical vs. electrochemical)

  4. Quantum statistics (cont.) Bosons 𝑄 𝑄 𝑄 2 1 3 = 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ , = 𝑓 βˆ’2 πœβˆ’πœˆ /π‘ˆ , = 𝑓 βˆ’3 πœβˆ’πœˆ /π‘ˆ , . . . 𝑄 𝑄 𝑄 0 0 0 1 1 + 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ + 𝑓 βˆ’2 πœβˆ’πœˆ /π‘ˆ + . . . = 1 βˆ’ 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ β‡’ 𝑄 𝑄 0 = π‘œ = 1 1 + 2 βˆ™ 𝑄 2 + . . . = 1 βˆ’ 𝑓 βˆ’πœβˆ’πœˆ (1 βˆ™ 𝑓 βˆ’πœβˆ’πœˆ π‘ˆ + 2 βˆ™ 𝑓 βˆ’2πœβˆ’πœˆ π‘ˆ + β‹― ) π‘œ = 0 βˆ™ 𝑄 0 + 1 βˆ™ 𝑄 π‘ˆ 𝑓 βˆ’πœβˆ’πœˆ 𝑓 βˆ’2πœβˆ’πœˆ 𝑓 βˆ’πœβˆ’πœˆ = 1 βˆ’ 𝑓 βˆ’πœβˆ’πœˆ π‘ˆ π‘ˆ π‘ˆ + + β‹― = π‘ˆ 1 βˆ’ 𝑓 βˆ’πœβˆ’πœˆ 1 βˆ’ 𝑓 βˆ’πœβˆ’πœˆ 1 βˆ’ 𝑓 βˆ’πœβˆ’πœˆ π‘ˆ π‘ˆ π‘ˆ 1 Bose-Einstein distribution π‘œ = 𝑓 πœβˆ’πœˆ /π‘ˆ βˆ’ 1 (Bose statistics) 𝜈 ≀ 0 (if energy starts from 0), otherwise infinity at 𝜁 = 𝜈

  5. Particle distributions: summary ο€­  𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ Maxwell-Boltzmann οƒ—  𝜁 (Boltzmann) 1 π‘ˆ = 0  π‘œ 𝜁 = Fermi-Dirac 𝑓 πœβˆ’πœˆ /π‘ˆ + 1 οƒ— (Fermi)  𝜁 𝜈 1 ο€­ ο€­ ο€­ Bose-Einstein 𝑓 πœβˆ’πœˆ /π‘ˆ βˆ’ 1 οƒ— (Bose) ο€­ 𝜁 𝜈 𝜈 is Fermi level ο€­ ο€­ To find 𝜈 : 𝑂 = π‘œ 𝜁 𝐸 𝜁 π‘’πœ π‘œ(𝜁) depends on temperature β‡’ 𝜈 depends on temperature density of states Remark 1. Often notation 𝑔 𝜁 instead of π‘œ(𝜁) , especially for Fermi distribution Remark 2. Large- 𝜁 tails of Fermi-Dirac and Bose-Einstein distributions coincide with Maxwell-Boltzmann distribution

  6. 2D case (not in textbook) 𝐸 𝜁 𝑛 𝐸 𝜁 is density of states, 𝐡 is area = 2𝑑 + 1 2πœŒβ„ 2 𝐡 𝑑 is spin, in general 2𝑑 + 1 is degeneracy Electrons (Fermi, 𝑑 = 1 2 ) spin spin ∞ 𝑂 𝑛 1 𝑛 2πœŒβ„ 2 2 π‘ˆ ln(1 + 𝑓 𝜈/π‘ˆ ) 𝐡 = 2πœŒβ„ 2 2 𝑓 (πœβˆ’πœˆ)/π‘ˆ + 1 π‘’πœ = 0 No spin factor of 2 in high magnetic field Bosons with 𝑑 = 0 ∞ 𝑂 𝑛 1 𝑛 2πœŒβ„ 2 π‘ˆ ln(1 βˆ’ 𝑓 𝜈/π‘ˆ ) 𝐡 = 𝑓 (πœβˆ’πœˆ)/π‘ˆ βˆ’ 1 π‘’πœ = 2πœŒβ„ 2 0

  7. 3D case = 𝑛 3/2 𝜁 1/2 𝐸 𝜁 𝐸 𝜁 is density of states, π‘Š is volume 2𝑑 + 1 π‘Š 2 𝜌 2 ℏ 3 𝑑 is spin, in general 2𝑑 + 1 is degeneracy (including valleys, etc.) ∞ 𝑛 3/2 𝜁 1/2 𝑂 1 π‘Š = 𝑓 (πœβˆ’πœˆ)/π‘ˆ Β± 1 (2𝑑 + 1) π‘’πœ 2 𝜌 2 ℏ 3 0 degeneracy ∞ 𝜁 𝑛 3/2 𝜁 1/2 𝐹 1 π‘Š = 𝑓 (πœβˆ’πœˆ)/π‘ˆ Β± 1 (2𝑑 + 1) π‘’πœ (e.g., for heat capacity) 2 𝜌 2 ℏ 3 0 Fermi: β€œ + ”, Bose: β€œ βˆ’ ” Unfortunately, these integrals cannot be calculated analytically. Simplification if βˆ’πœˆ ≫ π‘ˆ , then F-D and B-E distributions reduce to M-B. 1 𝑓 (πœβˆ’πœˆ)/π‘ˆ Β± 1 β‰ˆ 𝑓 βˆ’ πœβˆ’πœˆ /π‘ˆ 𝜁 βˆ’ 𝜈 ≫ π‘ˆ when

  8. Nondegenerate semiconductor Assume n-type (p-type similar), βˆ’πœˆ ≫ π‘ˆ , 2𝑑 + 1 = 2 conduction band > 3π‘ˆ 𝜈 ∞ 𝑛 3/2 𝜁 1/2 (Fermi level) 𝑂 2 𝜌 2 ℏ 3 𝑓 βˆ’(πœβˆ’πœˆ)/π‘ˆ 2 π‘’πœ = . . . π‘Š β‰ˆ 0 valence band (neglect) 3/2 π‘›π‘ˆ = 2 𝑓 𝜈/π‘ˆ Room temperature: π‘ˆ = 26 meV 2πœŒβ„ 2 3/2 2πœŒβ„ 2 𝜈 = π‘ˆ ln 𝑂 1 π‘Š 2 π‘›π‘ˆ degeneracy; can be larger, Si: 2 ο‚΄ 6 ∞ 𝜁 𝑛 3 2 𝜁 1 2 𝐹 π‘ˆ 2 π‘’πœ = . . . = 3 2 π‘ˆ 𝑂 2 𝜌 2 ℏ 3 𝑓 βˆ’ πœβˆ’πœˆ π‘Š β‰ˆ π‘Š 0 𝐹 = 3 2 π‘ˆπ‘‚

  9. Bose-Einstein condensation For Bose-Einstein distribution usually 𝜈 < 0 (cannot be 𝜈 > 0 ). However, at small enough π‘ˆ , it becomes 𝜈 = 0 , then ∞ 𝑛 3/2 𝜁 1/2 3 𝑂 1 π‘›π‘ˆ ( 𝑑 = 0) π‘Š = 𝑓 βˆ’πœˆ/π‘ˆ βˆ’ 1 π‘’πœ = 2.61 2πœŒβ„ 2 2 𝜌 2 ℏ 3 0 2/3 𝑑 = 2πœŒβ„ 2 𝑂 π‘ˆ Therefore critical temperature 𝑛 2.61 π‘Š Below π‘ˆ 𝑑 particles crowd into the ground state (finite fraction of all particles occupy ground state) 𝑂 = 𝑂 0 + π‘œ 𝜁 𝐸 𝜁 π‘’πœ Different calculation: Examples: superconductivity, superfluidity, B-E condensation of atoms

  10. Massless particles (photons, phonons) 𝑙 = 2𝜌 πœ‡ = πœ• 𝜁 = β„πœ• speed of light or sound velocity 𝑑 Number of particles is not conserved β‡’ 𝜈 = 0 (creation of extra particle does not cost extra energy) 1 π‘œ(πœ•) = (bosons) 𝑓 β„πœ•/π‘ˆ βˆ’ 1 𝑒𝑂 = 𝑒𝑦 𝑒𝑙 𝑦 𝑒𝑧 𝑒𝑙 𝑧 𝑒𝑨 𝑒𝑙 𝑨 𝑒𝑂 π‘Š = 𝑒𝑙 𝑦 𝑒𝑙 𝑧 𝑒𝑙 𝑨 β‡’ DOS: 2𝜌 3 2𝜌 3 π‘Š π‘’πœ• = 4πœŒπ‘™ 2 πœ• 2 𝑒𝑂 𝑒𝑙 Γ— 2 for photons (two polarizations) π‘’πœ• = 2 3 + 1 2𝜌 3 2𝜌 2 𝑑 3 Γ— 3 for phonons, better 3 𝑑 βŠ₯ 𝑑 βˆ₯ Average energy per dπœ• (for photons) π‘Š π‘’πœ• = β„πœ• 2πœ• 2 2β„πœ• 3 𝑒𝐹 1 𝑓 β„πœ•/π‘ˆ βˆ’ 1 = (Planck’s formula) 2𝜌 2 𝑑 3 (𝑓 β„πœ•/π‘ˆ βˆ’ 1) 2𝜌 2 𝑑 3

Recommend


More recommend