Quantum Impurity Physics with Microwave Photons Moshe Goldstein (Simons Fellow @ Yale) , Michel Devoret (Yale) , Manuel Houzet (CEA, Grenoble) , Leonid Glazman (Yale)
Outline • Introduction – Quantum impurities – Microwave photons • System and relation to anisotropic Kondo • AC conductance : Photon elastic scattering • Photon inelastic scattering
Circuit QED • Quantum optics with microwave circuits: [Scholkoepf and Girvin, Nature ‘ 08] – optical cavity ► microwave resonator – atom ► qubit • Small “cavity”, large “atom” ► strong light- • matter interaction
Many Body Physics • Controllable simulators of many-body physics Ultracold atoms in Microwave photons an optical lattice in a circuit : [Koch et al., PRA ‘ 10] [Bloch, Nature ‘08] • Could we start with something simpler?
Outline • Introduction – Quantum impurities – Microwave photons • System and relation to anisotropic Kondo • AC conductance : Photon elastic scattering • Photon inelastic scattering
Quantum Impurities • Small system coupled to quantum environment – Magnetic impurity in a – 2 level system in a Fermi sea ( Kondo ) bosonic bath ( spin-boson ) • Easy to study: – Experimentally : nanophysics ( QDs , nanograins ,…) – Theoretically ( RG , bosonization , CG , CFT , Bethe , NRG , DMRG ,…) • Teach us about: – Strong correlations ( asymptotic freedom , quantum phase transitions , non Fermi liquid , ...) – Nanophysics and quantum computation ( qubits )
Example: Kondo • Realizations – Magnetic impurity – Quantum dot with odd electron number ( spin qubit ) t • Anderson impurity model : B B 0 z z 0 0 H.c. H H n n Un n t c x c x env 2 2 G = pn |t| 2 : level width 0 H c c 0 c , env , , k k s k s s k s , k s k
The Kondo Problem t • Local moment regime [ G << +U,| | ] ► Kondo model : I 0 xy ( 0 ) ( 0 ) ( 0 ) H H S s S s I S s B S K env z z z z z 2 I xy =I z =I~t 2 /U>0 : exchange Impurity spin: S B z : local magnetic field 1 0 s c c Environment spin: , , ' ' , ' k s s s k s 2 , ' , , ' k k s s • Problem: divergences [Kondo ’ 64] – Example: susceptibility 1 n n 2 2 0 0 ~ 1 ln ln I I 0 : bandwidth T T T
Kondo Physics n I xy • RG equations ( B z =0 ) [Anderson] : n d I n 2 2 z I xy d ln 0 : bandwidth 0 n: local DoS n d I n xy 2 I I z xy d ln 0 • Ferromagnetic Kondo : – impurity decoupled – susceptibility: zz ~c(I)/T+… n I z Kosterlitz- • Antiferromagnetic Kondo : Thouless – impurity strongly-coupled ( asymptotic freedom ) transition – susceptibility: zz ~1/T K +… ( Fermi liquid ) n exp 1 / T K I T K : Kondo temperature 0
Outline • Introduction – Quantum impurities – Microwave photons • System and relation to anisotropic Kondo • AC conductance : Photon elastic scattering • Photon inelastic scattering
Superconducting Grain Array [Manucharyan et al., Science ‘ 09]
Superconducting Grain Array [Manucharyan et al., Science ‘ 09] C' C' C' C' C' C' C' Assuming C>>C’ 2 Q J J J J J J J i cos H J lead 1 i i 2 C C C C C C C C C i v p 2 2 1 ( ) ( ) H g x g x dx p lead x 2 x ( ) ( ) i x x – Waveguide for microwave photons – Usually g>>1 , but g~1 possible 0 ω Velocity: v/a C/J π R JC [ g<1 : Glazman & Larkin, PRL ‘ 97 ] Q g Admittance: * e 2Z
Adding a Quantum Impurity C' C' C' C' Quantum J J J J Impurity C C C C C C • Artificial atom in • ? microwave waveguide • Motivations: – Quantum optics ► many-body effects – Condensed matter ► bosons
Adding a Quantum Impurity C' C' C' C' Quantum J J J J Impurity C C C C C C • Transport Measurement : – Charge ► conserved – Energy ► not conserved (dissipation) • Where does energy go? – Photons at different frequencies!
Outline • Introduction – Quantum impurities – Microwave photons • System and relation to anisotropic Kondo • AC conductance : Photon elastic scattering • Photon inelastic scattering
System • Quantum impurity: two capacitively coupled grains, weakly coupled (J L/R <<J) to the leads – Only two charging states (n L/R =0,1 Cooper pairs ) C' C' C' L C' R C' C' C LR L R J L J R J J J J C L C R C C C C C C V g,R V g,L
System • Quantum impurity: two capacitively coupled grains, weakly coupled (J L/R <<J) to the leads – Only two charging states (n L/R =0,1 Cooper pairs ) C' L C' R C LR L R J L J R L R C L C R V g,R V g,L dx v p 2 2 1 ( ) ( ) H g x g x p lead x 2 , L R H n U n n imp LR L R , L R ( 0 ) i U ( 0 ) 1 0 H.c. H n J e lead imp , L R
Relation with Anderson Impurity C' L C' R C LR L R L R J L J R C L C R refermionization U t t LR L R R L L R spinless t / ↑ / ↓ / spinful – Spin anisotropy • Generalized Anderson – Luttinger liquid ( g≠ 1 ) impurity model : – Level-lead interaction
Kondo Description C' L C' R C LR L R 2e R L 2e J L J R C L C R t / ↑ / ↓ / • In Coulomb blockade valley – “ local moment ” regime { n L +n R 1 }: – Singly occupied states – “ spin ” { S z =(n L -n R )/2 } – Equivalent to Kondo with noninteracting lead : I xy 0 ( 0 ) ( 0 ) ( 0 ) H H S s S s I S s B S K env z z z z z 2 Impurity spin: S 1 Environment spin: 0 H c c 0 s c c env , , k k s k s k , s s , s ' k ' , s ' 2 , k s , ' , , ' k k s s
Kondo Parameters C' L C' R C LR L R 2e L R 2e J L J R C L C R t / ↑ / ↓ / I xy 0 ( 0 ) ( 0 ) ( 0 ) H H S s S s I S s B S K env z z z z z 2 • Schrieffer-Wolf (simplified expressions): , B V V , z L R g L g R
Kondo Parameters C' L C' R C LR L R 2e L R 2e J L J R C L C R t / ↑ / ↓ / I xy 0 ( 0 ) ( 0 ) ( 0 ) H H S s S s I S s B S K env z z z z z 2 • Schrieffer-Wolf (simplified expressions): , B V V 2 , z L R g L g R 0 L R 1 1 0 – bandwidth J J n L R 2 I n – local DoS xy U 0 0 0 LR
Kondo Parameters C' L C' R C LR L R 2e 2e L R J L J R C L C R t / ↑ / ↓ / I xy 0 ( 0 ) ( 0 ) ( 0 ) H H S s S s I S s B S K env z z z z z 2 • Schrieffer-Wolf (simplified expressions): , B V V 2 , z L R g L g R 0 L R 1 1 0 – bandwidth J J n L R 2 I n – local DoS xy U 0 0 0 LR 2 2 2 1 1 J 1 gU n L R 1 1 I p Z v g 2 U , L R 0 LR
Relevant Regime for SC C' L C' R C LR L R L R J L J R n I xy C L C R Kosterlitz- 1 1 J J n Thouless L R 2 I xy U transition 0 0 0 LR 2 2 2 1 1 J n L R 1 I Z 2 U L , R 0 LR 1 gU 1 p v g n I z • Typically: g>>1 , U L/R >0 ► I z >>I xy , AFM Kondo • g<1 possible [Glazman & Larkin, ‘ 97] ► I z < – I xy , FM Kondo
Outline • Introduction – Quantum impurities – Microwave photons • System and relation to anisotropic Kondo • AC conductance : Photon elastic scattering • Photon inelastic scattering
Recommend
More recommend