Quantum dark solitons in the one- dimensional Bose gas Joachim Brand Humboldt Kolleg – Controlling quantum matter: from ultracold atoms to solids– July 2018
Sophie S. Shamailov
Solitons Water Optics BEC Coupled Pedula Tikhonenko et al. (1996) 3 Sengstock group (2008) credit: Alex Kasman
Solitons are solutions of nonlinear partial differential equations. Can we find solitons in strongly-correlated quantum fluids? What are their properties? Let’s find them in the one-dimensional Bose gas.
Dark soliton oscillations in BEC experiment Solitons in trapped BEC oscillate more slowly than COM Theory: ✓ T s • Busch, Anglin PRL (2000) ◆ 2 M in • Konotop, Pitaevskii, PRL (2004) = = 2 M ph T trap Experiment: • Becker et al. Nat. Phys. (2008) • Weller et al. PRL (2008) Movie credits: Nick Parker Hamburg Experiment: Becker et al. (2008)
Dark solitons <latexit sha1_base64="0YUGAh1Eu2bIviM2gk6L17dgUk=">ACFnicbVDLSgMxFM3UV62vUZdugkWoi5aM+KgLoeDGlVSwD2iHksmkbWgmMyQZaRn6FW78FTcuFHEr7vwbM20RrR4IHM65l5x7vIgzpRH6tDILi0vLK9nV3Nr6xuaWvb1TV2EsCa2RkIey6WFORO0pnmtBlJigOP04Y3uEz9xh2VioXiVo8i6ga4J1iXEayN1LGL1512gHVfBok/hewzYSGLVEYHsIiFN+e1xu70B927DwqIef8FJUhKp2kzDETQCdGcmDGaod+6PthyQOqNCEY6VaDoq0m2CpGeF0nGvHikaYDHCPtgwVOKDKTSZnjeGBUXzYDaV5JtVE/bmR4ECpUeCZyTSmvdS8T+vFetu2U2YiGJNBZl+1I051CFMO4I+k5RoPjIE8lMVkj6WGKiTZM5U4Izf/JfUj8qOajk3BznK+VZHVmwB/ZBATjgDFTAFaiCGiDgHjyCZ/BiPVhP1qv1Nh3NWLOdXfAL1vsX5Zuejg=</latexit> <latexit sha1_base64="0YUGAh1Eu2bIviM2gk6L17dgUk=">ACFnicbVDLSgMxFM3UV62vUZdugkWoi5aM+KgLoeDGlVSwD2iHksmkbWgmMyQZaRn6FW78FTcuFHEr7vwbM20RrR4IHM65l5x7vIgzpRH6tDILi0vLK9nV3Nr6xuaWvb1TV2EsCa2RkIey6WFORO0pnmtBlJigOP04Y3uEz9xh2VioXiVo8i6ga4J1iXEayN1LGL1512gHVfBok/hewzYSGLVEYHsIiFN+e1xu70B927DwqIef8FJUhKp2kzDETQCdGcmDGaod+6PthyQOqNCEY6VaDoq0m2CpGeF0nGvHikaYDHCPtgwVOKDKTSZnjeGBUXzYDaV5JtVE/bmR4ECpUeCZyTSmvdS8T+vFetu2U2YiGJNBZl+1I051CFMO4I+k5RoPjIE8lMVkj6WGKiTZM5U4Izf/JfUj8qOajk3BznK+VZHVmwB/ZBATjgDFTAFaiCGiDgHjyCZ/BiPVhP1qv1Nh3NWLOdXfAL1vsX5Zuejg=</latexit> <latexit sha1_base64="0YUGAh1Eu2bIviM2gk6L17dgUk=">ACFnicbVDLSgMxFM3UV62vUZdugkWoi5aM+KgLoeDGlVSwD2iHksmkbWgmMyQZaRn6FW78FTcuFHEr7vwbM20RrR4IHM65l5x7vIgzpRH6tDILi0vLK9nV3Nr6xuaWvb1TV2EsCa2RkIey6WFORO0pnmtBlJigOP04Y3uEz9xh2VioXiVo8i6ga4J1iXEayN1LGL1512gHVfBok/hewzYSGLVEYHsIiFN+e1xu70B927DwqIef8FJUhKp2kzDETQCdGcmDGaod+6PthyQOqNCEY6VaDoq0m2CpGeF0nGvHikaYDHCPtgwVOKDKTSZnjeGBUXzYDaV5JtVE/bmR4ECpUeCZyTSmvdS8T+vFetu2U2YiGJNBZl+1I051CFMO4I+k5RoPjIE8lMVkj6WGKiTZM5U4Izf/JfUj8qOajk3BznK+VZHVmwB/ZBATjgDFTAFaiCGiDgHjyCZ/BiPVhP1qv1Nh3NWLOdXfAL1vsX5Zuejg=</latexit> <latexit sha1_base64="0YUGAh1Eu2bIviM2gk6L17dgUk=">ACFnicbVDLSgMxFM3UV62vUZdugkWoi5aM+KgLoeDGlVSwD2iHksmkbWgmMyQZaRn6FW78FTcuFHEr7vwbM20RrR4IHM65l5x7vIgzpRH6tDILi0vLK9nV3Nr6xuaWvb1TV2EsCa2RkIey6WFORO0pnmtBlJigOP04Y3uEz9xh2VioXiVo8i6ga4J1iXEayN1LGL1512gHVfBok/hewzYSGLVEYHsIiFN+e1xu70B927DwqIef8FJUhKp2kzDETQCdGcmDGaod+6PthyQOqNCEY6VaDoq0m2CpGeF0nGvHikaYDHCPtgwVOKDKTSZnjeGBUXzYDaV5JtVE/bmR4ECpUeCZyTSmvdS8T+vFetu2U2YiGJNBZl+1I051CFMO4I+k5RoPjIE8lMVkj6WGKiTZM5U4Izf/JfUj8qOajk3BznK+VZHVmwB/ZBATjgDFTAFaiCGiDgHjyCZ/BiPVhP1qv1Nh3NWLOdXfAL1vsX5Zuejg=</latexit> • Mean field (classical) theory: � Defocussing nonlinear Schrödinger (Gross-Pitaevskii) equation Velocity v s = 0 v s 6 = 0 Number density Number of depleted particles Z N d = [ n ( x ) − n bg ] dx Dark and grey soliton solution ( g >0): Tsuzuki, JLTP (1971) Phase Superfluid phase step ∆ φ Effective mass, length scale Kivshar, Luther-Davis (1998)
<latexit sha1_base64="a/8qt4gRnO0etMLRSAJvK2RKxvk=">ACN3icbVDLSgMxFM3UV62vqks3wSI0jJTBLsRCm4URCrYB3TqkEkzbdokMyQZoQzV278DXe6caGIW/A9LHQ1gOBwzncnOPHzGqtG2/WJml5ZXVtex6bmNza3snv7vXUGEsManjkIWy5SNFGBWkrqlmpBVJgrjPSNMfXoz95gORiobiTo8i0uGoJ2hAMdJG8vI3Q29w4gYS4cRJk+vUVTH3GCxDF0mskZhaJgSLcOixNOG9/n1SLKcpPIdTs+xGdDwKr7yBly/YJXsCuEicGSmAGWpe/tnthjmRGjMkFJtx450J0FSU8xImnNjRSKEh6hH2oYKxInqJO7U3hklC4MQme0HCi/p5IEFdqxH2T5Ej31bw3Fv/z2rEOKp2EijWRODpoiBmUIdwXCLsUkmwZiNDEJbU/BXiPjJlaFN1zpTgzJ+8SBrlkmOXnNvTQrUyqyMLDsAhOAYOANVcAlqoA4weASv4B18WE/Wm/VpfU2jGWs2sw/+wPr+AWeLrC4=</latexit> <latexit sha1_base64="a/8qt4gRnO0etMLRSAJvK2RKxvk=">ACN3icbVDLSgMxFM3UV62vqks3wSI0jJTBLsRCm4URCrYB3TqkEkzbdokMyQZoQzV278DXe6caGIW/A9LHQ1gOBwzncnOPHzGqtG2/WJml5ZXVtex6bmNza3snv7vXUGEsManjkIWy5SNFGBWkrqlmpBVJgrjPSNMfXoz95gORiobiTo8i0uGoJ2hAMdJG8vI3Q29w4gYS4cRJk+vUVTH3GCxDF0mskZhaJgSLcOixNOG9/n1SLKcpPIdTs+xGdDwKr7yBly/YJXsCuEicGSmAGWpe/tnthjmRGjMkFJtx450J0FSU8xImnNjRSKEh6hH2oYKxInqJO7U3hklC4MQme0HCi/p5IEFdqxH2T5Ej31bw3Fv/z2rEOKp2EijWRODpoiBmUIdwXCLsUkmwZiNDEJbU/BXiPjJlaFN1zpTgzJ+8SBrlkmOXnNvTQrUyqyMLDsAhOAYOANVcAlqoA4weASv4B18WE/Wm/VpfU2jGWs2sw/+wPr+AWeLrC4=</latexit> <latexit sha1_base64="a/8qt4gRnO0etMLRSAJvK2RKxvk=">ACN3icbVDLSgMxFM3UV62vqks3wSI0jJTBLsRCm4URCrYB3TqkEkzbdokMyQZoQzV278DXe6caGIW/A9LHQ1gOBwzncnOPHzGqtG2/WJml5ZXVtex6bmNza3snv7vXUGEsManjkIWy5SNFGBWkrqlmpBVJgrjPSNMfXoz95gORiobiTo8i0uGoJ2hAMdJG8vI3Q29w4gYS4cRJk+vUVTH3GCxDF0mskZhaJgSLcOixNOG9/n1SLKcpPIdTs+xGdDwKr7yBly/YJXsCuEicGSmAGWpe/tnthjmRGjMkFJtx450J0FSU8xImnNjRSKEh6hH2oYKxInqJO7U3hklC4MQme0HCi/p5IEFdqxH2T5Ej31bw3Fv/z2rEOKp2EijWRODpoiBmUIdwXCLsUkmwZiNDEJbU/BXiPjJlaFN1zpTgzJ+8SBrlkmOXnNvTQrUyqyMLDsAhOAYOANVcAlqoA4weASv4B18WE/Wm/VpfU2jGWs2sw/+wPr+AWeLrC4=</latexit> <latexit sha1_base64="a/8qt4gRnO0etMLRSAJvK2RKxvk=">ACN3icbVDLSgMxFM3UV62vqks3wSI0jJTBLsRCm4URCrYB3TqkEkzbdokMyQZoQzV278DXe6caGIW/A9LHQ1gOBwzncnOPHzGqtG2/WJml5ZXVtex6bmNza3snv7vXUGEsManjkIWy5SNFGBWkrqlmpBVJgrjPSNMfXoz95gORiobiTo8i0uGoJ2hAMdJG8vI3Q29w4gYS4cRJk+vUVTH3GCxDF0mskZhaJgSLcOixNOG9/n1SLKcpPIdTs+xGdDwKr7yBly/YJXsCuEicGSmAGWpe/tnthjmRGjMkFJtx450J0FSU8xImnNjRSKEh6hH2oYKxInqJO7U3hklC4MQme0HCi/p5IEFdqxH2T5Ej31bw3Fv/z2rEOKp2EijWRODpoiBmUIdwXCLsUkmwZiNDEJbU/BXiPjJlaFN1zpTgzJ+8SBrlkmOXnNvTQrUyqyMLDsAhOAYOANVcAlqoA4weASv4B18WE/Wm/VpfU2jGWs2sw/+wPr+AWeLrC4=</latexit> The one-dimensional Bose gas Lieb-Liniger model: Bosons with contact interactions in one dimension N H = − ~ 2 d 2 X X + g δ ( x i − x j ) dx 2 2 m j j =1 h i,j i ⎛ ⎞ Bethe ansatz wave function ∑ ∑ | = ⟨ { } { } ⟩ x k a ( ) P ⎜ k x ⎟ exp , i i P ( ) i i ⎝ ⎠ ∈ P S N ( ) i 2 arctan k j − k l k j + 1 mgh − 2 = 2 π X L I j L l N X k j - Rapidities/quasimomenta P tot = ~ k j , j =1 - Integer quantum numbers I j N E tot = ~ 2 - number of bosons N X k 2 j . 2 m j =1
Low-lying excitation spectrum (yrast states) Experimental probe of dynamic structure Here for Tonks-Girardeau gas, γ = ∞ , N=15 Energy factor Fabbri et al. (2015) Lieb’s type II elementary excitations Umklapp excitation (ring current) P Momentum Eigenstates are translationally invariant! 2 π ~ n Where are the solitons?
Comparison of dispersion relations Takayama, Ishikawa, JPSP (1980): Asymptotically (weak interaction, thermodynamic limit) is GP dark soliton congruent with yrast dispersion of Lieb-Liniger model 0 ( E − E g ) 5 Circles: finite system (ring), 4 N = 10, γ =1 3 2 1 Thermodynamic limit, h 2 n 2 2 m 0 N = ∞ , γ =1 ¯ π / 2 π 0 3 π / 2 2 π P gm hn 0 γ = ¯ n 0 ~ 2 − 1
How to get over the translational invariance of the eigenstates? • Syrwid, Sacha, PRA (2015): Soliton emerges during particle measurement. • Sato et al. NJP (2012, 2016): Localised density dip by superposition of all yrast eigenstates • Our proposal: Gaussian wave packet of yrast states Soliton velocity: 5 0 ( E − E g ) 4 v s = dE s 3 dp c 2 Fialko, Delattre, JB, Kolovsky (2012) 1 h 2 n 2 2 m Shamailov, Brand, arXiv:1805.07856 0 ¯ π / 2 π 3 π / 2 2 π 0 P hn 0 ¯ − 1
Simulating time evolution n ( x, t ) = h P 0 ( t ) | ˆ ρ ( x ) | P 0 ( t ) i X C P 0 ∗ C P 0 = p h q, yr | ˆ ρ (0) | p, yr i q p,q ⇥ exp[ i ( p � q ) x/ ~ � i ( E p � E q ) t/ ~ ] , The form factor is calculated by determinantal formula from the rapidities. Formula derived from algebraic Bethe ansatz: Slavnov (1989), Korepin (1982), Caux (2007)
Time evolution of Gaussian wave packet (exact) N = 100 γ = 1 1.2 0.8 n s /n 0 30 0.4 20 hn 2 ¯ 0 2 m t 10 0 40 50 60 70 0 80 90 n 0 x Shamailov, Brand, arXiv:1805.07856
Time evolution of quantum dark soliton Use the following ansatz, in analogy to quantum bright solitons: 2 + σ 2 ∆ x 2 ( t ) = σ fs CoM ( t ) , " ◆ 2 # ✓ ~ t σ 2 CoM ( t ) = σ 2 1 + 0 2 M σ 2 0 where Z ( x � h x i ) 2 [ n ( x ) � n 0 ] dx ∆ x 2 = N − 1 d Z N d = [ n ( x ) � n 0 ] dx ~ 2 σ 2 0 = 4 ∆ P 2 Ballistic spreading of the CoM – fit two parameters: σ 2 fs , M Shamailov, Brand, arXiv:1805.07856
Recommend
More recommend