quantum computer
play

Quantum Computer Jaewan Kim jaewan@kias.re.kr School of - PowerPoint PPT Presentation

Quantum Computer Jaewan Kim jaewan@kias.re.kr School of Computational Sciences Korea Institute for Advanced Study KIAS (Korea Institute for Advanced Study) Established in 1996 Located in Seoul, Korea Pure Theoretical Basic Science


  1. Quantum Computer Jaewan Kim jaewan@kias.re.kr School of Computational Sciences Korea Institute for Advanced Study

  2. KIAS (Korea Institute for Advanced Study) • Established in 1996 • Located in Seoul, Korea • Pure Theoretical Basic Science • Schools – Mathematics – Physics – Computational Sciences • By the computation, For the computation • 20 Prof’s, 2 Distinguished Prof’s, 20 KIAS Scholars, 70 Research Fellows, 20 Staff Members

  3. Quantum Information Physics Science Quantum Information Science Quantum Parallelism � Quantum computing is exponentially larger and faster than digital computing. Quantum Fourier Transform, Quantum Database Search, Quantum Many-Body Simulation (Nanotechnology) No Clonability of Quantum Information, Irrevesability of Quantum Measurement � Quantum Cryptography (Absolutely secure digital communication) Quantum Correlation by Quantum Entanglement � Quantum Teleportation, Quantum Superdense Coding, Quantum Cryptography, Quantum Imaging

  4. Twenty Questions • Animal … • Four legs? Yes(1) or No(0) • Herbivorous? Yes(1) or No(0) . Yes(1) or No(0) . . . . • Tiger?

  5. It from Bit John A. Wheeler

  6. Yoot = Ancient Korean Binary Dice x x x x x x x x x 1 1 0 1

  7. Taegeukgi (Korean National Flag) 1 0 Qubit 0 1 j a b = + Qubit = quantum bit (binary digit)

  8. Businessweek 21 Ideas for the 21st Century

  9. Transition to Quantum • Mathematics: Real � Complex • Physics: Classical � Quantum • Digital Information Processing – Hardwares by Quantum Mechanics – Softwares and Operating Systems by Classical Ideas • Quantum Information Processing – All by Quantum Ideas

  10. Quantum Information Processing • Quantum Computer NT – Quantum Algorithms: Softwares • Simulation of quantum many-body systems • Factoring large integers IT • Database search – Experiments: Hardwares • Ion Traps BT • NMR • Cavity QED, etc.

  11. Quantum Information Processing • Quantum Communication – Quantum Cryptography IT • Absolutely secure digital communication • Generation and Distribution of Quantum Key – ~100 km through optical fiber (Toshiba) – 23.4 km wireless � secure satellite communication – Quantum Teleportation • Photons • Atoms, Molecules • Quantum Imaging and Quantum Metrology

  12. Cryptography and QIP Giving disease, - 병 주고 약 주고 - Giving medicine. Out with the old, In with the new. • Public Key Cryptosystem (Asymmetric) – Computationally Secure – Based on unproven mathematical conjectures – Cursed by Quantum Computation • One-Time Pad (Symmetric) – Unconditionally Secure – Impractical – Saved by Quantum Cryptography

  13. KIAS-ETRI, December 2005. 25 km Quantum Cryptography T.G. Noh and JK

  14. Classical Computation • Hilbert (1900): 23 most challenging math problems – The Last One : Is there a mechanical procedure by which the truth or falsity of any mathematical conjecture could be decided? • Turing – Conjecture ~ Sequence of 0’s and 1’s – Read/Write Head: Logic Gates – Model of Modern Computers

  15. Turing Machine Finite State Machine: Head ′ = q ′  ( , ) q f q s  ′ =  s g q s ( , )  q =  d d q s ( , ) Bit {0,1 } d → s s ' Infinitely long tape: Storage

  16. Bit and Logic Gate 0 � 1 “Universal” 1 � 0 NOT NAND 00 � 0 01 � 0 “Reversible” 10 � 0 11 � 1 AND C-NOT 00 � 0 01 � 1 10 � 1 11 � 1 OR “Universal” CCN ( Toffoli ) 00 � 0 “Reversible” 01 � 1 10 � 1 11 � 0 XOR C-Exch ( Fredkin )

  17. DNA Computing Adleman • Bit { 0, 1 } � Tetrit (?) { A, G, T, C} • Gate � Enzyme • Parallel Ensemble Computation – Hamiltonian Path Problem

  18. Complexity N= (# bits to describe the problem, size of the problem) (#steps to solve the problem) = Pol(N) � “P(polynomial)”: Tractable, easy (#steps to verify the solution) = Pol(N) � “NP (nondeterministic polynomial)”: Intractable NP ⊃ P P NP NP ≠ P or NP=P?

  19. Quantum Information {0,1 } • Bit 2 2 + + = a 0 b 1 with a b 1 � Qubit • N bits � 2 N states, One at a time Linearly parallel computing AT BEST • N qubits � Linear superposition of 2 N states at the same time Exponentially parallel computing � Quantum Parallelism Deutsch But when you extract result, you cannot get all of them.

  20. Quantum Algorithms 1. [Feynman] Simulation of Quantum Physical Systems with HUGE Hilber space ( 2 N -D ) e.g. Strongly Correlated Electron Systems 2. [Peter Shor] Factoring large integers, period finding t q ∝ Pol (N) t cl ∼ Exp (N 1/3 ) 3. [Grover] Searching t q ∝ √ N 〈 t cl 〉 ~ N/2

  21. Digital Computer ⋅ 1 N N bits N bits Digital Computers in parallel { ⋅ m N m N bits N bits Quantum Computer : Quantum Parallelism 2 N N bits N bits

  22. Quantum Gates Time-dependent Schrödinger Eq. Unitary Transform ∂ ψ = ψ Norm Preserving h i H ∂ Reversible t − h / ψ = iHt ψ = ψ ( ) (0) ( ) (0) t e U t       1 0 1 0 0 1 θ = =       P ( ) I = X   θ i     0 1 1 0   0 e −       1 0 0 1 1 1 1 π =       Z =P( )= Y XZ = H = − −       0 1 1 0 1 1 2      1 1 1 1 ( ) 1 1 1 = = = +      H 0 0 1 Hadamard −      1 1 0 1 2 2 2      1 1 0 1 ( ) 1 1 1 = = = −      1 0 1 H − −      1 1 1 1 2 2 2

  23. Hadamard Gate ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ H H ... H 0 0 ... 0 1 2 N 1 2 N ( ) ( ) ( ) 1 1 1 = + ⊗ + ⊗ + 0 1 0 1 ... 0 1 1 1 2 2 N N 2 2 2 ( ) 1 = + + + 0 0 ...0 1 0 ...0 ... 11 ...1 1 2 N 1 2 N 1 2 N N 2 − N 1 2 1 ∑ b i n a r y e x p r e s s i o n = k ( ) N k = 2 0

  24. Universal Quantum Gates General Rotation of a Single Qubit   θ θ     − φ − i       cos ie sin     2 2 V   θ φ = V ( , )  θ θ     + φ − i       ie sin cos       2 2 X c : CNOT (controlled - NOT) or XOR         1 0 1 0 0 0 0 1 ⊗ + ⊗                 0 0 0 1 0 1 1 0 = ⊗ + ⊗ 0 0 I 1 1 X = ⊕ X a b a a b c

  25. Quantum Circuit/Network DiVincenzo, Qu-Ph/0002077 Scalable Qubits Unitary evolution : Deterministic : Reversible Initial State Universal Gates | 0 〉 X M C X 13 | Ψ〉 …X 1 H 2 | 0 〉 | Ψ〉 H M | 0 〉 M t Quantum measurement Cohere, : Probabilistic Not Decohere : Irreversible change

  26. √ Quantum Key Distribution � 3 Single-Qubit Gates [BB84,B92] √ QKD[E91] Single- � 3 Quantum Repeater √ & Two-Qubit Gates Quantum Teleportation ≥ Quantum Error Correction Single- 40 Quantum Computer & Two-Qubit Gates ≥ 7-Qubit QC √ 100

  27. Physical systems actively considered for quantum computer implementation • Electrons on liquid He • Liquid-state NMR • Small Josephson junctions • NMR spin lattices – “charge” qubits • Linear ion-trap – “flux” qubits spectroscopy • Spin spectroscopies, • Neutral-atom optical impurities in semiconductors lattices • Cavity QED + atoms • Coupled quantum dots – Qubits: spin,charge, • Linear optics with excitons single photons – Exchange coupled, • Nitrogen vacancies in cavity coupled diamond

  28. = × 15 3 5 Chuang Nature 414, 883-887 (20/ 27 Dec 2001) OR QP/ 0112176

  29. Concept device: spin-resonance transistor R. Vrijen et al, Phys. Rev. A 62, 012306 (2000)

  30. Quantum-dot array proposal

  31. Ion Traps • Couple lowest centre-of-mass modes to internal electronic states of N ions.

  32. Quantum Error Correcting Code Three Bit Code Encode Recover Decode channel φ φ U m1m2 0 0 noise M 0 0 M

  33. Molding a Quantum State | 0 〉 X M C X 13 | Ψ〉 …X 1 H 2 | 0 〉 | Ψ〉 H M | 0 〉 M t Molding

  34. Sculpturing a Quantum State - Cluster state quantum computing – - One-way quantum computing -- | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 | + 〉 Initialize each qubit in | + 〉 state. 1. 2. Contolled-Phase between the neighboring qubits. 3. Single qubit manipulations and single qubit measurements only [Sculpturing]. No two qubit operations!

Recommend


More recommend