quantum bv theories on manifolds with boundary
play

Quantum BV theories on manifolds with boundary Pavel Mnev Max - PowerPoint PPT Presentation

Quantum BV theories on manifolds with boundary Pavel Mnev Max Planck Institute for Mathematics, Bonn Notre Dame University, October 28, 2015 Joint work with Alberto S. Cattaneo and Nikolai Reshetikhin Introduction BV-BFV formalism, outline


  1. Introduction BV-BFV formalism, outline Examples Motivation I: perturbative Chern-Simons theory Motivation I: Chern-Simons theory – the perturbative answer (Witten-Axelrod-Singer): Z pert ( M, G, A 0 , � , ϕ ) = �� � � − χ (Γ) 4 ψ A 0 ,g · exp � S ( A 0 ) · τ ( M, A 0 ) | Aut(Γ) | i E + V · Φ A 0 ,g i 1 πi 2 · e = e · Γ Γ · e ic ( � ) S grav ( g,φ ) M is closed , A 0 is an acyclic flat connection. Γ ∈ { , , , · · · } – connected 3-valent, � � Φ Γ = η ( x e in , x e out ) Conf V ( M ) edges e Here η ∈ Ω 2 (Conf 2 ( M ) , E ⊠ E ) is the propagator – the integral kernel of d ∗ E / ∆ E .

  2. Introduction BV-BFV formalism, outline Examples Motivation I: perturbative Chern-Simons theory Motivation I: Chern-Simons theory – the perturbative answer (Witten-Axelrod-Singer): Z pert ( M, G, A 0 , � , ϕ ) = �� � � − χ (Γ) 4 ψ A 0 ,g · exp � S ( A 0 ) · τ ( M, A 0 ) | Aut(Γ) | i E + V · Φ A 0 ,g i 1 πi 2 · e = e · Γ Γ · e ic ( � ) S grav ( g,φ ) M is closed , A 0 is an acyclic flat connection. Γ ∈ { , , , · · · } – connected 3-valent, � � Φ Γ = η ( x e in , x e out ) Conf V ( M ) edges e Here η ∈ Ω 2 (Conf 2 ( M ) , E ⊠ E ) is the propagator – the integral kernel of d ∗ E / ∆ E . g – an arbitrary Riemannian metric, ϕ – framing of M , c ( � ) ∈ C [[ � ]] a universal element.

  3. Introduction BV-BFV formalism, outline Examples Motivation II: cut/paste approach in field theory Motivation II: calculating partition functions by cut/paste. Idea: � � � � �� � � Z = Z , Z

  4. Introduction BV-BFV formalism, outline Examples Motivation II: cut/paste approach in field theory Motivation II: calculating partition functions by cut/paste. Idea: � � � � �� � � Z = Z , Z Functorial description (Atiyah-Segal): Closed ( n − 1) -manifold Σ H Σ n -cobordism M Partition function Z M : H Σ in → H Σ out Gluing Composition Z M I ∪ M II = Z M II ◦ Z M I

  5. Introduction BV-BFV formalism, outline Examples Motivation II: cut/paste approach in field theory Motivation II: calculating partition functions by cut/paste. Idea: � � � � �� � � Z = Z , Z Functorial description (Atiyah-Segal): Closed ( n − 1) -manifold Σ H Σ n -cobordism M Partition function Z M : H Σ in → H Σ out Gluing Composition Z M I ∪ M II = Z M II ◦ Z M I Atiyah: TQFT is a functor of monoidal categories (Cob n , ⊔ ) → (Vect C , ⊗ ) .

  6. Introduction BV-BFV formalism, outline Examples Motivation II: cut/paste approach in field theory Example: 2D TQFT     Z can be expressed in terms of building blocks: � � Z : C → H S 1 1 � � Z : H S 1 → C 2     Z   : H S 1 ⊗ H S 1 → H S 1 3     Z  : H S 1 → H S 1 ⊗ H S 1  4 – Universal local building blocks for 2D TQFT!

  7. Introduction BV-BFV formalism, outline Examples Corners For n > 2 we want to glue along pieces of boundary/ glue-cut with corners. Building blocks: balls with stratified boundary (cells)

  8. Introduction BV-BFV formalism, outline Examples Corners For n > 2 we want to glue along pieces of boundary/ glue-cut with corners. Building blocks: balls with stratified boundary (cells) Extension of Atiyah’s axioms to gluing with corners: extended TQFT (Baez-Dolan-Lurie).

  9. Introduction BV-BFV formalism, outline Examples Corners For n > 2 we want to glue along pieces of boundary/ glue-cut with corners. Building blocks: balls with stratified boundary (cells) Extension of Atiyah’s axioms to gluing with corners: extended TQFT (Baez-Dolan-Lurie). Example: Turaev-Viro 3D state-sum model. building block - 3-simplex q6j-symbol gluing sum over spins on edges

  10. Introduction BV-BFV formalism, outline Examples Goal Problems: Very few examples! Some natural examples do not fit into Atiyah axiomatics. Goal: Construct TQFT with corners and gluing out of perturbative path integrals for diffeomorphism-invariant action functionals. Investigate interesting examples.

  11. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories Reminder. A classical BV theory on a closed spacetime manifold M :

  12. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories Reminder. A classical BV theory on a closed spacetime manifold M : F

  13. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories Reminder. A classical BV theory on a closed spacetime manifold M : F ω ∈ Ω 2 ( F ) odd-symplectic, gh = − 1

  14. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories Reminder. A classical BV theory on a closed spacetime manifold M : F ω ∈ Ω 2 ( F ) odd-symplectic, gh = − 1 Q ∈ X ( F ) , odd, gh = 1 , Q 2 = 0

  15. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories Reminder. A classical BV theory on a closed spacetime manifold M : F ω ∈ Ω 2 ( F ) odd-symplectic, gh = − 1 Q ∈ X ( F ) , odd, gh = 1 , Q 2 = 0 S ∈ C ∞ ( F ) , gh = 0 , ι Q ω = δS

  16. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories Reminder. A classical BV theory on a closed spacetime manifold M : F ω ∈ Ω 2 ( F ) odd-symplectic, gh = − 1 Q ∈ X ( F ) , odd, gh = 1 , Q 2 = 0 S ∈ C ∞ ( F ) , gh = 0 , ι Q ω = δS Note: { S, S } ω = 0 .

  17. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories BV-BFV formalism for gauge theories on manifolds with boundary Reference: A. S. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on manifolds with boundary, Comm. Math. Phys. 332 2 (2014) 535–603. For M with boundary: M − − − − → ( F , ω, Q, S ) – space of fields     � π � π ∗ ∂M − − − − → ( F ∂ , ω ∂ = δα ∂ , Q ∂ , S ∂ ) – phase space

  18. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories BV-BFV formalism for gauge theories on manifolds with boundary Reference: A. S. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on manifolds with boundary, Comm. Math. Phys. 332 2 (2014) 535–603. For M with boundary: M − − − − → ( F , − 1 , ω Q , S 0 ) – space of fields 1     � π � π ∗ ∂M − − − − → ( F ∂ , ω ∂ = δα ∂ , Q ∂ , S ∂ 1 ) – phase space 0 1 Subscripts =“ghost numbers”.

  19. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories BV-BFV formalism for gauge theories on manifolds with boundary Reference: A. S. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on manifolds with boundary, Comm. Math. Phys. 332 2 (2014) 535–603. For M with boundary: M − − − − → ( F , ω, Q, S ) – space of fields     � π � π ∗ ∂M − − − − → ( F ∂ , ω ∂ = δα ∂ , Q ∂ , S ∂ ) – phase space Q 2 = 0 , ι Q ω = δS + π ∗ α ∂ . Relations: Q 2 ∂ = 0 , ι Q ∂ ω ∂ = δS ∂ ; ⇒ CME: 1 2 ι Q ι Q ω = π ∗ S ∂

  20. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories BV-BFV formalism for gauge theories on manifolds with boundary Reference: A. S. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on manifolds with boundary, Comm. Math. Phys. 332 2 (2014) 535–603. For M with boundary: M − − − − → ( F , ω, Q, S ) – space of fields     � π � π ∗ ∂M − − − − → ( F ∂ , ω ∂ = δα ∂ , Q ∂ , S ∂ ) – phase space Q 2 = 0 , ι Q ω = δS + π ∗ α ∂ . Relations: Q 2 ∂ = 0 , ι Q ∂ ω ∂ = δS ∂ ; ⇒ CME: 1 2 ι Q ι Q ω = π ∗ S ∂ Gluing: M I ∪ Σ M II → F M I × F Σ F M II

  21. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories BV-BFV formalism for gauge theories on manifolds with boundary Reference: A. S. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on manifolds with boundary, Comm. Math. Phys. 332 2 (2014) 535–603. For M with boundary: M − − − − → ( F , ω, Q, S ) – space of fields     � π � π ∗ ∂M − − − − → ( F ∂ , ω ∂ = δα ∂ , Q ∂ , S ∂ ) – phase space Q 2 = 0 , ι Q ω = δS + π ∗ α ∂ . Relations: Q 2 ∂ = 0 , ι Q ∂ ω ∂ = δS ∂ ; ⇒ CME: 1 2 ι Q ι Q ω = π ∗ S ∂ Gluing: M I ∪ Σ M II → F M I × F Σ F M II This picture extends to higher-codimension strata!

  22. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories Example: abelian Chern-Simons theory, dim M = 3 . M − − − − → ( F , ω, Q, S )     � π � π ∗ ∂M − − − − → ( F ∂ , ω ∂ = δα ∂ , Q ∂ , S ∂ )

  23. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories Example: abelian Chern-Simons theory, dim M = 3 . (Ω • ( M )[1] , M − − − − → ω, Q, S )     � π : A�→A| ∂ � π ∗ → (Ω • ( ∂M )[1] , ω ∂ = δα ∂ , Q ∂ , S ∂ ) ∂M − − − − + A + − 1 + c + Superfield A = c + A ���� ���� − 2 � �� � ghost , 1 classical field , 0 antifields

  24. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories Example: abelian Chern-Simons theory, dim M = 3 . � (Ω • ( M )[1] , 1 M − − − − → M δ A ∧ δ A , Q, S ) 2     � π : A�→A| ∂ � π ∗ � → (Ω • ( ∂M )[1] , 1 ∂M − − − − ∂ δ A ∧ δ A , Q ∂ , S ∂ ) 2 + A + − 1 + c + Superfield A = c + A ���� ���� − 2 � �� � ghost , 1 classical field , 0 antifields

  25. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories Example: abelian Chern-Simons theory, dim M = 3 . � � (Ω • ( M )[1] , 1 M d A δ M − − − − → M δ A ∧ δ A , δ A , S ) 2     � π : A�→A| ∂ � π ∗ � � → (Ω • ( ∂M )[1] , 1 ∂ d A δ ∂M − − − − ∂ δ A ∧ δ A , δ A , S ∂ ) 2 + A + − 1 + c + Superfield A = c + A ���� ���� − 2 � �� � ghost , 1 classical field , 0 antifields

  26. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories Example: abelian Chern-Simons theory, dim M = 3 . � � � (Ω • ( M )[1] , 1 M d A δ δ A , 1 M − − − − → M δ A ∧ δ A , M A ∧ d A ) 2 2     � π : A�→A| ∂ � π ∗ � � � → (Ω • ( ∂M )[1] , 1 ∂ d A δ 1 ∂M − − − − ∂ δ A ∧ δ A , δ A , ∂ A ∧ d A ) 2 2 + A + − 1 + c + Superfield A = c + A ���� ���� − 2 � �� � ghost , 1 classical field , 0 antifields

  27. Introduction BV-BFV formalism, outline Examples Classical BV-BFV theories Example: abelian Chern-Simons theory, dim M = 3 . � � � (Ω • ( M )[1] , 1 M d A δ δ A , 1 M − − − − → M δ A ∧ δ A , M A ∧ d A ) 2 2     � π : A�→A| ∂ � π ∗ � � � → (Ω • ( ∂M )[1] , 1 ∂ d A δ 1 ∂M − − − − ∂ δ A ∧ δ A , δ A , ∂ A ∧ d A ) 2 2 + A + − 1 + c + Superfield A = c + A ���� ���� − 2 � �� � ghost , 1 classical field , 0 antifields Euler-Lagrange moduli spaces: → H • ( M )[1] M − − − −   � ι ∗ → H • ( ∂M )[1] ∂M − − − −

  28. Introduction BV-BFV formalism, outline Examples Quantum BV-BFV theories Quantum BV-BFV formalism. ( H • Σ closed, dim Σ = n − 1 �→ Σ , Ω Σ )

  29. Introduction BV-BFV formalism, outline Examples Quantum BV-BFV theories Quantum BV-BFV formalism. ( H • Σ closed, dim Σ = n − 1 �→ Σ , Ω Σ ) M , dim M = n �→ ( F res , ω res )

  30. Introduction BV-BFV formalism, outline Examples Quantum BV-BFV theories Quantum BV-BFV formalism. ( H • Σ closed, dim Σ = n − 1 �→ Σ , Ω Σ ) M , dim M = n �→ ( F res , ω res ) 1 2 ( F res ) ⊗ H ∂M Z M ∈ Dens

  31. Introduction BV-BFV formalism, outline Examples Quantum BV-BFV theories Quantum BV-BFV formalism. ( H • Σ closed, dim Σ = n − 1 �→ Σ , Ω Σ ) M , dim M = n �→ ( F res , ω res ) 1 2 ( F res ) ⊗ H ∂M satisfying mQME: Z M ∈ Dens � i � � Ω ∂M − i � ∆ res Z M = 0

  32. Introduction BV-BFV formalism, outline Examples Quantum BV-BFV theories Quantum BV-BFV formalism. ( H • Σ closed, dim Σ = n − 1 �→ Σ , Ω Σ ) M , dim M = n �→ ( F res , ω res ) 1 2 ( F res ) ⊗ H ∂M satisfying mQME: Z M ∈ Dens � i � � Ω ∂M − i � ∆ res Z M = 0 Reminder: In Darboux coordinates ( x i , ξ i ) on F res , ∂ ∂ ∆ res = ∂x i ∂ξ i

  33. Introduction BV-BFV formalism, outline Examples Quantum BV-BFV theories Quantum BV-BFV formalism. ( H • Σ closed, dim Σ = n − 1 �→ Σ , Ω Σ ) M , dim M = n �→ ( F res , ω res ) 1 2 ( F res ) ⊗ H ∂M satisfying mQME: Z M ∈ Dens � i � � Ω ∂M − i � ∆ res Z M = 0 � i � Gauge-fixing ambiguity ⇒ Z M ∼ Z M + � Ω ∂M − i � ∆ res ( · · · ) .

  34. Introduction BV-BFV formalism, outline Examples Quantum BV-BFV theories Quantum BV-BFV formalism. ( H • Σ closed, dim Σ = n − 1 �→ Σ , Ω Σ ) M , dim M = n �→ ( F res , ω res ) 1 2 ( F res ) ⊗ H ∂M satisfying mQME: Z M ∈ Dens � i � � Ω ∂M − i � ∆ res Z M = 0 � i � Gauge-fixing ambiguity ⇒ Z M ∼ Z M + � Ω ∂M − i � ∆ res ( · · · ) . Gluing: Z M I ∪ Σ M II = P ∗ ( Z M I ∗ Σ Z M II )

  35. Introduction BV-BFV formalism, outline Examples Quantum BV-BFV theories Quantum BV-BFV formalism. ( H • Σ closed, dim Σ = n − 1 �→ Σ , Ω Σ ) M , dim M = n �→ ( F res , ω res ) 1 2 ( F res ) ⊗ H ∂M satisfying mQME: Z M ∈ Dens � i � � Ω ∂M − i � ∆ res Z M = 0 � i � Gauge-fixing ambiguity ⇒ Z M ∼ Z M + � Ω ∂M − i � ∆ res ( · · · ) . Gluing: Z M I ∪ Σ M II = P ∗ ( Z M I ∗ Σ Z M II ) ∗ Σ — pairing of states in H Σ ,

  36. Introduction BV-BFV formalism, outline Examples Quantum BV-BFV theories Quantum BV-BFV formalism. ( H • Σ closed, dim Σ = n − 1 �→ Σ , Ω Σ ) M , dim M = n �→ ( F res , ω res ) 1 2 ( F res ) ⊗ H ∂M satisfying mQME: Z M ∈ Dens � i � � Ω ∂M − i � ∆ res Z M = 0 � i � Gauge-fixing ambiguity ⇒ Z M ∼ Z M + � Ω ∂M − i � ∆ res ( · · · ) . Gluing: Z M I ∪ Σ M II = P ∗ ( Z M I ∗ Σ Z M II ) ∗ Σ — pairing of states in H Σ , P ∗ — BV pushforward (fiber BV integral) for P F M I res × F M II → F M I ∪ Σ M II − res res

  37. Introduction BV-BFV formalism, outline Examples Aside: BV pushforward Aside: BV pushforward. V = V ′ × � V — splitting of odd-symplectic manifolds, P : V → V ′

  38. Introduction BV-BFV formalism, outline Examples Aside: BV pushforward Aside: BV pushforward. V = V ′ × � V — splitting of odd-symplectic manifolds, P : V → V ′ L ⊂ � V Lagrangian

  39. Introduction BV-BFV formalism, outline Examples Aside: BV pushforward Aside: BV pushforward. V = V ′ × � V — splitting of odd-symplectic manifolds, P : V → V ′ L ⊂ � V Lagrangian BV pushforward: 1 1 2 ( V ) 2 ( V ′ ) P ∗ : Dens → Dens

  40. Introduction BV-BFV formalism, outline Examples Aside: BV pushforward Aside: BV pushforward. V = V ′ × � V — splitting of odd-symplectic manifolds, P : V → V ′ L ⊂ � V Lagrangian BV pushforward: 1 1 2 ( V ) 2 ( V ′ ) P ∗ : Dens → Dens � ψ �→ V ψ L⊂ �

  41. Introduction BV-BFV formalism, outline Examples Aside: BV pushforward Aside: BV pushforward. V = V ′ × � V — splitting of odd-symplectic manifolds, P : V → V ′ L ⊂ � V Lagrangian BV pushforward: 1 1 2 ( V ) 2 ( V ′ ) P ∗ : Dens → Dens � ψ �→ V ψ L⊂ � Theorem P ∗ is a chain map: P ∗ (∆ V ψ ) = ∆ V ′ P ∗ ψ 1

  42. Introduction BV-BFV formalism, outline Examples Aside: BV pushforward Aside: BV pushforward. V = V ′ × � V — splitting of odd-symplectic manifolds, P : V → V ′ L ⊂ � V Lagrangian BV pushforward: 1 1 2 ( V ) 2 ( V ′ ) P ∗ : Dens → Dens � ψ �→ V ψ L⊂ � Theorem P ∗ is a chain map: P ∗ (∆ V ψ ) = ∆ V ′ P ∗ ψ 1 For L 0 ∼ L 1 , P ( L 1 ) ψ = P ( L 0 ) ψ + ∆ V ′ ( · · · ) 2 ∗ ∗

  43. Introduction BV-BFV formalism, outline Examples Aside: BV pushforward Aside: BV pushforward. V = V ′ × � V — splitting of odd-symplectic manifolds, P : V → V ′ L ⊂ � V Lagrangian BV pushforward: 1 1 2 ( V ) 2 ( V ′ ) P ∗ : Dens → Dens � ψ �→ V ψ L⊂ � Theorem P ∗ is a chain map: P ∗ (∆ V ψ ) = ∆ V ′ P ∗ ψ 1 For L 0 ∼ L 1 , P ( L 1 ) ψ = P ( L 0 ) ψ + ∆ V ′ ( · · · ) 2 ∗ ∗ Reference: P. Mnev, Discrete BF theory, arXiv:0809.1160

  44. Introduction BV-BFV formalism, outline Examples Quantization Quantization Choose p : F ∂ → B Lagrangian fibration, α ∂ | p − 1 ( b ) = 0 . 1 2 ( B ) , Ω ∂ = � H ∂ = Dens S ∂ ∈ End( H ∂ ) 1 .

  45. Introduction BV-BFV formalism, outline Examples Quantization Quantization Choose p : F ∂ → B Lagrangian fibration, α ∂ | p − 1 ( b ) = 0 . 1 2 ( B ) , Ω ∂ = � H ∂ = Dens S ∂ ∈ End( H ∂ ) 1 . F   � π F ∂   � p B

  46. Introduction BV-BFV formalism, outline Examples Quantization Quantization Choose p : F ∂ → B Lagrangian fibration, α ∂ | p − 1 ( b ) = 0 . 1 2 ( B ) , Ω ∂ = � H ∂ = Dens S ∂ ∈ End( H ∂ ) 1 . = π − 1 p − 1 { b } F ⊃ F b   � π F ∂   p � B ∋ b boundary condition

  47. Introduction BV-BFV formalism, outline Examples Quantization Quantization Choose p : F ∂ → B Lagrangian fibration, α ∂ | p − 1 ( b ) = 0 . 2 ( B ) , Ω ∂ = � 1 H ∂ = Dens S ∂ ∈ End( H ∂ ) 1 . = π − 1 p − 1 { b } F ⊃ F b   � π F ∂   p � B ∋ b boundary condition Partition function: � i 1 � S , 2 ( B ) Z M ( b ) = e Z M ∈ Dens L⊂F b L ⊂ F b gauge-fixing Lagrangian. Problem: Z M may be ill-defined due to zero-modes.

  48. Introduction BV-BFV formalism, outline Examples Quantization Quantization Choose p : F ∂ → B Lagrangian fibration, α ∂ | p − 1 ( b ) = 0 . 1 2 ( B ) , Ω ∂ = � H ∂ = Dens S ∂ ∈ End( H ∂ ) 1 . = π − 1 p − 1 { b } F ⊃ F b   � π F ∂   � p B ∋ b boundary condition Solution: Split F b = F res × � F ∋ ( φ res , � φ ) . Partition function: � � S ( b,φ res , � i 1 1 φ ) , 2 ( B ) ⊗ Dens 2 ( F res ) Z M ( b, φ res ) = e Z M ∈ Dens L⊂ � F L ⊂ � F gauge-fixing Lagrangian.

  49. Introduction BV-BFV formalism, outline Examples Quantization Quantization Choose p : F ∂ → B Lagrangian fibration, α ∂ | p − 1 ( b ) = 0 . 1 2 ( B ) , Ω ∂ = � H ∂ = Dens S ∂ ∈ End( H ∂ ) 1 . = π − 1 p − 1 { b } F ⊃ F b   � π F ∂   � p B ∋ b boundary condition Solution: Split F b = F res × � F ∋ ( φ res , � φ ) . Partition function: � � S ( b,φ res , � i 1 1 φ ) , 2 ( B ) ⊗ Dens 2 ( F res ) Z M ( b, φ res ) = e Z M ∈ Dens L⊂ � F L ⊂ � F gauge-fixing Lagrangian. P → F ′ Z ′ F res − ⇒ M = P ∗ Z M res

  50. Introduction BV-BFV formalism, outline Examples Abelian BF theory Abelian BF theory: the continuum model. Input: M a closed oriented n -manifold M . E an SL ( m ) -local system.

  51. Introduction BV-BFV formalism, outline Examples Abelian BF theory Abelian BF theory: the continuum model. Input: M a closed oriented n -manifold M . E an SL ( m ) -local system. Space of BV fields: F = Ω • ( M, E )[1] ⊕ Ω • ( M, E ∗ )[ n − 2] ∋ ( A, B ) � Action: S = M � B, d E A � . Reference: A. S. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer invariants, Lett. Math. Phys. 2, 3 (1978) 247–252. A. S. Schwarz: For M closed and E acyclic, the partition function is the R -torsion τ ( M, E ) ∈ R .

  52. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M closed, E possibly non-acyclic, F res = H • ( M, E )[1] ⊕ H • ( M, E ∗ )[ n − 2] and Z M = ξ · τ ( M, E )

  53. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M closed, E possibly non-acyclic, F res = H • ( M, E )[1] ⊕ H • ( M, E ∗ )[ n − 2] and Z M = ξ · τ ( M, E ) 1 2 ( F res ) is the R-torsion where τ ( M, E ) ∈ Det H • ( M, E ) = Dens

  54. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M closed, E possibly non-acyclic, F res = H • ( M, E )[1] ⊕ H • ( M, E ∗ )[ n − 2] and Z M = ξ · τ ( M, E ) 1 2 ( F res ) is the R-torsion and where τ ( M, E ) ∈ Det H • ( M, E ) = Dens � n � n 2 k ( − 1) k ) · dim H k ( M,E ) · ( e − πi 2 k ( − 1) k ) · dim H k ( M,E ) k =0 ( − 1 4 − 1 k =0 ( 1 4 − 1 2 � ) ξ = (2 π � )

  55. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M closed, E possibly non-acyclic, F res = H • ( M, E )[1] ⊕ H • ( M, E ∗ )[ n − 2] and Z M = ξ · τ ( M, E ) 1 2 ( F res ) is the R-torsion and where τ ( M, E ) ∈ Det H • ( M, E ) = Dens � n � n 2 k ( − 1) k ) · dim H k ( M,E ) · ( e − πi 2 k ( − 1) k ) · dim H k ( M,E ) k =0 ( − 1 4 − 1 k =0 ( 1 4 − 1 2 � ) ξ = (2 π � ) 16 s with 2 πi In particular Z M contains a mod16 phase e s = � n k =0 ( − 1 + 2 k ( − 1) k ) · dim H k ( M, E ) .

  56. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M with boundary, E possibly non-acyclic,

  57. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M with boundary, E possibly non-acyclic, Z M = ξ · τ ( M, Σ in ; E ) · �� � � � · exp i B a + b A − B ( x ) η ( x, y ) A ( y ) � Σ out Σ in Σ out × Σ in ∋ ( x,y )

  58. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M with boundary, E possibly non-acyclic, Z M = ξ · τ ( M, Σ in ; E ) · �� � · exp i � � B a + b A − B ( x ) η ( x, y ) A ( y ) � Σ out Σ in Σ out × Σ in ∋ ( x,y ) Where: F res = H • ( M, Σ in ; E )[1] ⊕ H • ( M, Σ out ; E ∗ )[ n − 2] ∋ ( a , b )

  59. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M with boundary, E possibly non-acyclic, Z M = ξ · τ ( M, Σ in ; E ) · �� � · exp i � � B a + b A − B ( x ) η ( x, y ) A ( y ) � Σ out Σ in Σ out × Σ in ∋ ( x,y ) B = Ω • (Σ in )[1] ⊕ Ω • (Σ out )[ n − 2] ∋ ( A , B ) Where: � � 1 2 ( B ) H Σ = Dens ∋ Conf k (Σ in ) × Conf l (Σ out ) k,l ≥ 0 Ψ( x 1 , . . . , x k ; y 1 , . . . , y l ) A ( x 1 ) · · · A ( x k ) B ( y 1 ) · · · B ( y l )

  60. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M with boundary, E possibly non-acyclic, Z M = ξ · τ ( M, Σ in ; E ) · �� � · exp i � � B a + b A − B ( x ) η ( x, y ) A ( y ) � Σ out Σ in Σ out × Σ in ∋ ( x,y ) Where: ξ as before (but for relative cohomology),

  61. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M with boundary, E possibly non-acyclic, Z M = ξ · τ ( M, Σ in ; E ) · �� � · exp i � � B a + b A − B ( x ) η ( x, y ) A ( y ) � Σ out Σ in Σ out × Σ in ∋ ( x,y ) Where: τ - relative R-torsion,

  62. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M with boundary, E possibly non-acyclic, Z M = ξ · τ ( M, Σ in ; E ) · �� � · exp i � � B a + b A − B ( x ) η ( x, y ) A ( y ) � Σ out Σ in Σ out × Σ in ∋ ( x,y ) η ∈ Ω n − 1 (Conf 2 ( M ) , E ⊠ E ∗ ) – propagator, i.e. Where: � M ∋ y η ( x, y ) α ( y ) is a chain contraction from Ω • ( M, Σ in ; E ) to α �→ H • ( M, Σ in ; E ) .

  63. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M with boundary, E possibly non-acyclic, Z M = ξ · τ ( M, Σ in ; E ) · �� � · exp i � � B a + b A − B ( x ) η ( x, y ) A ( y ) � Σ out Σ in Σ out × Σ in ∋ ( x,y ) This result satisfies: gluing

  64. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M with boundary, E possibly non-acyclic, Z M = ξ · τ ( M, Σ in ; E ) · �� � · exp i � � B a + b A − B ( x ) η ( x, y ) A ( y ) � Σ out Σ in Σ out × Σ in ∋ ( x,y ) This result satisfies: gluing mQME

  65. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M with boundary, E possibly non-acyclic, Z M = ξ · τ ( M, Σ in ; E ) · �� � · exp i � � B a + b A − B ( x ) η ( x, y ) A ( y ) � Σ out Σ in Σ out × Σ in ∋ ( x,y ) This result satisfies: gluing mQME � i � change of η shifts Z M by � Ω ∂ − i � ∆ res -exact term.

  66. Introduction BV-BFV formalism, outline Examples Abelian BF theory Result, C-M-R arXiv:1507.01221 For M with boundary, E possibly non-acyclic, Z M = ξ · τ ( M, Σ in ; E ) · �� � · exp i � � B a + b A − B ( x ) η ( x, y ) A ( y ) � Σ out Σ in Σ out × Σ in ∋ ( x,y ) This result satisfies: gluing mQME � i � change of η shifts Z M by � Ω ∂ − i � ∆ res -exact term. �� � � Σ out d E B δ Σ in d E A δ BFV operator: Ω ∂ = − i � δ B + δ A

  67. Introduction BV-BFV formalism, outline Examples Abelian BF theory Gluing in two steps: � � i Σ2 B 2 A 2 · Z M I ( B 2 , A 1 ; a I , b I ) . � Z M = A 2 , B 2 Z M II ( B 3 , A 2 ; a II , b II ) · e � 1 Z M = P ∗ � Z M , for P : F I res × F II res → F res . 2

  68. Introduction BV-BFV formalism, outline Examples Gluing of propagators Result, C-M-R arXiv:1507.01221 η I , η II – propagators on M I , M II . Assume H • ( M, Σ 1 ) = H • ( M I , Σ 1 ) ⊕ H • ( M II , Σ 2 ) . Then the glued propagator on M is:     η I ( x, y ) if x, y ∈ M I          η II ( x, y ) if x, y ∈ M II  η ( x, y ) =   0 if x ∈ M I , y ∈ M II      �     η II ( x, z ) η I ( z, y ) if x ∈ M II , y ∈ M I   z ∈ Σ 2

  69. Introduction BV-BFV formalism, outline Examples Poisson sigma model Example: Poisson sigma model, n = 2 . � M � B, dA � + 1 Action: S = 2 � π ( B ) , A ⊗ A � π = � ij π ij ( u ) ∂ ∂ ∂u j Poisson bivector on R m . ∂u i ∧ Result, C-M-R arXiv:1507.01221 � Z M = ξ · τ · exp i � graphs

  70. Introduction BV-BFV formalism, outline Examples Poisson sigma model Example: Poisson sigma model, n = 2 . � M � B, dA � + 1 Action: S = 2 � π ( B ) , A ⊗ A � π = � ij π ij ( u ) ∂ ∂ ∂u j Poisson bivector on R m . ∂u i ∧ Result, C-M-R arXiv:1507.01221 � Z M = ξ · τ · exp i � graphs Z M satisfies: gluing mQME � i � change of η shifts Z M by � Ω ∂ − i � ∆ res -exact term.

  71. Introduction BV-BFV formalism, outline Examples Poisson sigma model Example: Poisson sigma model, n = 2 . � M � B, dA � + 1 Action: S = 2 � π ( B ) , A ⊗ A � π = � ij π ij ( u ) ∂ ∂ ∂u j Poisson bivector on R m . ∂u i ∧ Result, C-M-R arXiv:1507.01221 � Z M = ξ · τ · exp i � graphs Z M satisfies: gluing mQME � i � change of η shifts Z M by � Ω ∂ − i � ∆ res -exact term. Ω ∂ = standard-ordering quantization ( B �→ − i � δ δ A on Σ in , A �→ − i � δ δ B � B i d A i + 1 2Π ij ( B ) A i A j where Π ij ( u ) = u i ∗ u j − u j ∗ u i on Σ out ) of is i � ∂ Kontsevich’s deformation of π .

  72. Introduction BV-BFV formalism, outline Examples Poisson sigma model Rules for calculating Φ Γ (“Feynman rules”). Decorate half-edges by i ∈ { 1 , . . . , m } , put internal vertices to z 1 . . . , z p ∈ M , boundary in-vertices to x 1 , . . . , x k ∈ Σ in , boundary out-vertices to y 1 , . . . , y l ∈ Σ out . Assign: Sum over i -labels, integrate over positions of vertices.

  73. Introduction BV-BFV formalism, outline Examples Exact discretizations Reference. Abelian and non-abelian BF : P. Mnev, Discrete BF theory, arXiv:0809.1160 (– for M closed), A. S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular BV-BFV- BF theory. (– with gluing). 1D Chern-Simons: A. Alekseev, P. Mnev, One-dimensional Chern-Simons theory, Comm. Math. Phys. 307 1 (2011) 185–227.

  74. Introduction BV-BFV formalism, outline Examples Exact discretizations Example: abelian BF theory on a cobordism with a cell decomposition. Reference. A. S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular BV-BFV- BF theory. M an n -cobordism, T a cell decomposition. T ∨ – dual decomposition.

  75. Introduction BV-BFV formalism, outline Examples Exact discretizations Example: abelian BF theory on a cobordism with a cell decomposition. Reference. A. S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular BV-BFV- BF theory. M an n -cobordism, T a cell decomposition. T ∨ – dual decomposition. F T = C • ( T )[1] ⊕ C • ( T ∨ )[ n − 2] ∋ ( A, B ) .

  76. Introduction BV-BFV formalism, outline Examples Exact discretizations Example: abelian BF theory on a cobordism with a cell decomposition. Reference. A. S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular BV-BFV- BF theory. M an n -cobordism, T a cell decomposition. T ∨ – dual decomposition. F T = C • ( T )[1] ⊕ C • ( T ∨ )[ n − 2] ∋ ( A, B ) . BV 2-form ω comes from the Lefschetz pairing C k ( T, T in ) ⊗ C n − k ( T ∨ , T ∨ out ) → R , extended by zero to T in , T ∨ out .

  77. Introduction BV-BFV formalism, outline Examples Exact discretizations Example: abelian BF theory on a cobordism with a cell decomposition. Reference. A. S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular BV-BFV- BF theory. M an n -cobordism, T a cell decomposition. T ∨ – dual decomposition. F T = C • ( T )[1] ⊕ C • ( T ∨ )[ n − 2] ∋ ( A, B ) . BV 2-form ω comes from the Lefschetz pairing C k ( T, T in ) ⊗ C n − k ( T ∨ , T ∨ out ) → R , extended by zero to T in , T ∨ out . S = � B, dA � T − � B, A � T out .

  78. Introduction BV-BFV formalism, outline Examples Exact discretizations Example: abelian BF theory on a cobordism with a cell decomposition – continued. Quantization – as in continuum case, but replacing differential forms by cellular cochains. R -torsion appears as a measure-theoretic integral rather than regularized ∞ -dimensional integral.

  79. Introduction BV-BFV formalism, outline Examples Exact discretizations Example: abelian BF theory on a cobordism with a cell decomposition – continued. Quantization – as in continuum case, but replacing differential forms by cellular cochains. R -torsion appears as a measure-theoretic integral rather than regularized ∞ -dimensional integral. Data on T can itself be viewed as quantum BV-BFV theory: � S · µ T, � satisfies mQME ( i i Z = e � Ω − i � ∆ T ) Z = 0 with Ω = − i � � d A , ∂ ∂ A � T in − i � � d B , ∂ ∂ B � T out .

  80. Introduction BV-BFV formalism, outline Examples Exact discretizations Example: abelian BF theory on a cobordism with a cell decomposition – continued. Quantization – as in continuum case, but replacing differential forms by cellular cochains. R -torsion appears as a measure-theoretic integral rather than regularized ∞ -dimensional integral. Data on T can itself be viewed as quantum BV-BFV theory: � S · µ T, � satisfies mQME ( i i Z = e � Ω − i � ∆ T ) Z = 0 with Ω = − i � � d A , ∂ ∂ A � T in − i � � d B , ∂ ∂ B � T out . Consistent with BV pushforwards along cellular aggregations T ′ → T .

  81. Introduction BV-BFV formalism, outline Examples Conclusion Further program → Corners. 1 Partition function for a “building block” (cell) in interesting 2 examples. Compute cohomology of Ω ∂ , e.g. in PSM. 3 More general polarizations, generalized Hitchin’s connection. 4 Chern-Simons theory in BV-BFV formalism: extension of 5 Axelrod-Singer’s treatment to 3-manifolds with boundary/corners. Comparison with Witten-Reshetikhin-Turaev non-perturbative answers. Prove the conjecture that k → ∞ asymptotics of the RT invariant on a closed 3-manifold is given by Axelrod-Singer expansion. Observables supported on submanifolds. 6

Recommend


More recommend