quantization
play

Quantization Kohler structures and generalized Work Bischoff - PowerPoint PPT Presentation

Quantization Kohler structures and generalized Work Bischoff Francis with in progress Based arXiv 1804.05412 our paper : : on . . . - model The Zunino 2nd 19-79 r : Is Nig ) } { csih ) ( ( Lorentz Riemann II - I N


  1. Quantization Kohler structures and generalized Work Bischoff Francis with in progress

  2. Based arXiv 1804.05412 our paper : : on . . .

  3. - model The Zunino 2nd 19-79 r : Is Nig ) } { csih ) ( ( Lorentz Riemann II - I N -6,2 ) from TMO Inherits Koike I Susy ! 19-84 Rock for Hull Kahler Gates generalized : is true same - - - D - compatible ( It . ) structures complex , I g dd'±w±# d¥=o St . , Hermitian forms wt w - ,

  4. Katherine g%=z¥Zz , IR ) ( U Zn ) ) chart ( K # U complex E - , , - - , , , extend 9 to :S str M → Zunino : complex Use . super field E to I M → : a { oI*K Then action is droke Q1ianalogofkforgen.tiihler.IT

  5. ⇒ Quantization - for - Quantize w=gI koihler I Pre may , 17 ) ( L - H H to , , FCP ) He ! ! ( iw ( with at :3 - - line bundle , L ) " HMM It Je D using = ⑦,E①L① - graded algebra I Q2iAnalogofkandt-forGenka.hu?

  6. Poi try G Hitchin 2006 : MiG 2007,2010 , . " " ( Itt ' - ) g- " " " I Insist :* . . 't ) QCT #T=I±QtiQI±hpphu+e " Kiihler usual QA In the = w and T± 0 case = , QB O = to with a Gk structure a. Kahler Deform to a

  7. ⇒ GK of . ) a p2 Construction ( M , I : { = - HYP ? MT ) 013 ) ) Ho I T E = - study Kainer Fubini Wo = ← 91 at , , ← it i at lenient ← ' o - - Ii ' → Wo ) , it COL TM ) JV =o( sit tr { Cv ,r]=o I ve Hit in . 4 ! ( I " Itt w ( . ) 145 It I = of ds = - a w + = So . fg.It.I-lgeuerahzedkiihleroncp2.se

  8. Summary want potential K Kahler Gen : . Pre ) A Quantization want He , - a geometrical holomorphic input key : Poisson E geometry

  9. ' 01 ) to ( TheKoihlerpotenti# Donaldson according I t.in#Ka)=5Aa,AaEr9Ua ) i 25 Ka w = = - Ht #-) - Ap /←ahkrc [ Aap ] holomorphic Aa e Aap = Tie Tq translation Aap Glue by to , using , - , i ⇐ ÷÷÷÷÷ ' I -

  10. TEKE ÷÷÷÷::÷:÷ii .tt# Result Z II Est Aap ) r ) = ( - symplectic holomorphic - rly d ( Real - i 2kg ) with = = w . for Imr Lagrangian [ L is for R Symplectic Re " I ! ! Effie ! :# entia.LisanA-braneforlmr.LT

  11. ' Wes ) ( P Ex , ' ) affine [ w ] bundle Z with class H' I = r e inte =¥÷÷ : : i dxidy r = Lz locus } { L real =

  12. Moritaca-te.org r ) ( X its realizations study Weinstein poisson via symplectic : , i÷ : " i " it - tD¥¥ - • ( Kerth Ttr t IT lnvolutire - - ' ) , 't ) Poisson ( X , ol ' ( X ( x quotient is r • ,

  13. ( Weinstein ) 2- category Morita Hr ) - anti ¥ip sp . ' ) Mort I , r 't , X ' x = I x ( xp , • • I e. {4,0×1}=0 Kent '* Ker t* sit i. . ' I 2- it ' ) ft ,r ) ' ' LZ local r isos Mor ) → = , = { § ! ! ! ) µ Picard group Mor Pic ( X r ) . , Weinstein - equivalence self Pic Identity in is distinguished : a grouper 'd .

  14. ⇒ " : :::::÷.÷ :* :* T*g Z r scan = = , x Indy ) ( X ' a a o= - - , . , b ) Z a' x ,y I et 2- a a = x , sf It sf It X Ceax , ytxb ) ix. y ) dandlytxb ) dbndx r= -

  15. M.G. , Zab zine ) ( Assuming ' exists ) theorem ( Bischoff QI F = , - ) Kahler structure C g , It , I equivalent A Generalized is CZ , r ) :( . symplectic → txt ,q ) Hot Morita equivalence rt to x. a 's ÷¥ brane with C bisection together nondegenerate a . ' . #t . . It is z - - ( Xt , rt ) ( X f- ) .

  16. . Differ ELE Xt X ÷÷£ . , I L It foliations t induce on s . - . , My real and F • = It Z Is ' " " ' ' ' ' + F' # - F I It = g = - . ( Xt , rt ) ( X f- ) . 't S 'T tensor symmetric unique Riemannian require .

  17. ⇒ ⇒ Potential function " ii. art rly read is dry = LU , R ) dk Ke 1mHz ) = n=2i2K dz=r/y=-2i22 ⇒ determined by smooth K function real g .

  18. ⇒ x Indy ) :L X. DO ( Z ,r ) ( X ' E a o= - . , , b ) a' ( x ,y eh 2- a a = x , { it :* . if . , dlyntnxeb ) tdlszlrdx r= damn I I I 192 chat 9 Pi Pz Darboux , . 19212 ) { K' Liz ( = 19212 - - - Kohler EZ Gen metric complete . on

  19. Quantization -

  20. ⇒ ⇒ Gutowitfen ( Z w ) ) ( M embed into : r , , n/µ= r ) # sit w . : :;s÷ :* :* :L :3 mis ie . Zee branes M two , Space filling L brane ( brave Lagrangian H=HomlM,Z#T

  21. proposalforquautization-LC.CZ SL ) - model branes A two : in , Imr ) of ( £ Morita brane , equivalence bisection . H=Hom(L,Zcc€

  22. ⇒ GK of . ) a p2 Construction ( M , I : { = - HYP ? MT ) 013 ) ) Ho I T E = - study Kainer Fubini Wo = ← 91 at , , ← it i at lenient ← ' o - - Ii ' → Wo ) , it COL TM ) JV =o( sit tr { Cv ,r]=o I ve Hit in . 4 ! ( I " Itt w ( . ) 145 It I = of ds = - a w + = So . fg.It.I-lgeuerahzedkiihleroncp2.se

  23. ⇐ construction DO the Iterate ( X. : , , • • 7oz Z -2oz • • - e . , z a . • £12 723 Zoe • • Ly d I d y t a , a , n , X Xz Xo X Xz X , - , z - algebra t-qtO.HomCLoqZ.IT of Lok of Hamiltonian deforms lndep . .

  24. ' ) ' ) PG ↳ ( a ) ' ( P for Pic C P Pic IP Mor x = , Ocn ) ) ( 4 , this compute case If in we Ockn ) ) Ho ( IP ' to A Id 4= = • , \ k > o noncommutative Ay Vandenbergh let Id • deformation of A ,

Recommend


More recommend