Quantitative Diagonalizability Part I: Three Measures of Nonnormality
π β pseudospectrum Ξ π π β π¨ β β βΆ || π¨ β π β1 || β₯ π β1
π β pseudospectrum Ξ π π β π¨ β β βΆ || π¨ β π β1 || β₯ π β1 = {π¨ β β βΆ π π π¨ β π β€ π } = {π¨ β β: π¨ β π‘πππ π΅ + πΉ , ||πΉ|| β€ π}
π β pseudospectrum Ξ π π β π¨ β β βΆ || π¨ β π β1 || β₯ π β1 For normal matrices, Ξ π π = Ξ 0 π + πΈ 0, π
Pseudospectrum of Toeplitz Example
π β pseudospectrum Ξ π π β π¨ β β βΆ || π¨ β π β1 || β₯ π β1 e.g. discretization of pde from acoustics:
π β pseudospectrum Ξ π π β π¨ β β βΆ || π¨ β π β1 || β₯ π β1 = {π¨ β β βΆ π π π¨ β π β€ π } = π¨ β β: π¨ β π‘πππ π΅ + πΉ , ||πΉ|| β€ π Ξ π π β Ξ 0 π + π π π πΈ 0, π [Bauer-Fike]: For distinct eigs Ξ π π = Ξ 0 π +βͺ π πΈ(π π , π π π π) + π(π)
Part II: Daviesβ Conjecture (with Jess Banks, Archit Kulkarni, Satyaki Mukherjee)
Diagonalization π΅ β β πΓπ is diagonalizable if π΅ = ππΈπ β1 for invertible π , diagonal πΈ . Every matrix is a limit of diagonalizable matrices. Let π π π΅ β ||π|| β ||π β1 || be the eigenvector condition number of π΅ . π π βͺ β π π = β Question: Given a matrix π΅ and π > 0 , what is min{π π π΅ + πΉ : ||πΉ|| β€ π} ?
Diagonalization π΅ β β πΓπ is diagonalizable if π΅ = ππΈπ β1 for invertible π , diagonal πΈ . Every matrix is a limit of diagonalizable matrices. Let π π π΅ β ||π|| β ||π β1 || be the eigenvector condition number of π΅ . π π βͺ β π π π΅ = 1 for normal, β for nondiagonalizable π π = β Question: Given a matrix π΅ and π > 0 , what is min{π π π΅ + πΉ : ||πΉ|| β€ π} ?
Diagonalization π΅ β β πΓπ is diagonalizable if π΅ = ππΈπ β1 for invertible π , diagonal πΈ . Every matrix is a limit of diagonalizable matrices. Let π π π΅ β ||π|| β ||π β1 || be the eigenvector condition number of π΅ . π π βͺ β π π = β Question: Given a matrix π΅ and π > 0 , what is min{π π π΅ + πΉ : ||πΉ|| β€ π} ?
Motivation: Computing Matrix Functions Problem. Compute π(π΅) for analytic function π , e.g. π π¨ = π π¨ , π¨ π . NaΓ―ve Approach . π π΅ = ππ πΈ π β1 . Highly unstable if π π (π΅) is big. e.g. π Γ π Toeplitz: π π (π΅ + πΉ) π = 100 πΉ~ Gaussian π π π΅ = 2 πβ1 β 10 30 β₯ πΉ β₯ Empirically: π΅ is close to a matrix with much better π π β¦
Motivation: Computing Matrix Functions Problem. Compute π(π΅) for analytic function π , e.g. π π¨ = π π¨ , π¨ π . NaΓ―ve Approach . π π΅ = ππ πΈ π β1 . Highly unstable if π π (π΅) is big. e.g. π Γ π Toeplitz: π π (π΅ + πΉ) π = 100 πΉ~ Gaussian π π π΅ = 2 πβ1 β 10 30 β₯ πΉ β₯ Empirically: π΅ is close to a matrix with much better π π β¦
Motivation: Computing Matrix Functions Problem. Compute π(π΅) for analytic function π , e.g. π π¨ = π π¨ , π¨ π . NaΓ―ve Approach . π π΅ = ππ πΈ π β1 . Highly unstable if π π (π΅) is big. e.g. π Γ π Toeplitz, n=100: π π (π΅ + πΉ) π = 100 πΉ~ Gaussian π π π΅ = 2 πβ1 β 10 30 β₯ πΉ β₯
Motivation: Computing Matrix Functions Problem. Compute π(π΅) for analytic function π , e.g. π π¨ = π π¨ , π¨ π . NaΓ―ve Approach . π π΅ = ππ πΈ π β1 . Highly unstable if π π (π΅) is big. e.g. π Γ π Toeplitz, n=100: π π (π΅ + πΉ) πΉ~ Gaussian π π π΅ = 2 πβ1 β 10 30 β₯ πΉ β₯ experiment by M. Embree Empirically: π΅ is close to a matrix with much better π π β¦
Motivation: Computing Matrix Functions Problem. Compute π(π΅) for analytic function π , e.g. π π¨ = π π¨ , π¨ π . NaΓ―ve Approach . π π΅ = ππ πΈ π β1 . Highly unstable if π π (π΅) is big. e.g. π Γ π Toeplitz, n=100: π π (π΅ + πΉ) πΉ~ Gaussian π π π΅ = 2 πβ1 β 10 30 β₯ πΉ β₯ Empirically : π΅ is close to a matrix with much better π π .
Idea. Approximate π(π΅) by π π΅ + πΉ for some small πΉ . e.g. π π΅ = π΅ π E = randn(n)*delta [V,D]=eig(A+E) π S = V*D.^(1/2)*inv(V)
Idea. Approximate π(π΅) by π π΅ + πΉ for some small πΉ . e.g. π π΅ = π΅ π E = randn(n)*delta [V,D]=eig(A+E) π S = V*D.^(1/2)*inv(V)
Idea. Approximate π(π΅) by π π΅ + πΉ for some small πΉ . e.g. π π΅ = π΅ π E = randn(n)*delta [V,D]=eig(A+E) π S = V*D.^(1/2)*inv(V) experiment by M. Embree
Approximate Diagonalization Theorem. [Daviesβ06] For every π΅ β β πΓπ with ||π΅|| β€ 1 and π β (0,1) there is a perturbation πΉ such that πβ1 π π π π΅ + πΉ β€ π· π Conjecture. For every π΅ β β πΓπ with ||π΅|| β€ 1 and π β (0,1) there is a perturbation πΉ such that π π π΅ + πΉ β€ π· π π [Daviesβ06]: true for π = 3 and for special case π΅ = πΎ π , with π· π = 2 .
Approximate Diagonalization Theorem. [Daviesβ06] For every π΅ β β πΓπ with ||π΅|| β€ 1 and π β (0,1) there is a perturbation πΉ such that πβ1 π π π π΅ + πΉ β€ π· π Conjecture. For every π΅ β β πΓπ with ||π΅|| β€ 1 and π β (0,1) there is a perturbation πΉ such that π π π΅ + πΉ β€ π· π π [Daviesβ06]: true for π = 3 and for special case π΅ = πΎ π , with π· π = 2 .
Approximate Diagonalization Theorem. [Daviesβ06] For every π΅ β β πΓπ with ||π΅|| β€ 1 and π β (0,1) there is a perturbation πΉ such that πβ1 π π π π΅ + πΉ β€ π· π Conjecture. For every π΅ β β πΓπ with ||π΅|| β€ 1 and π β (0,1) there is a perturbation πΉ such that π π π΅ + πΉ β€ π· π π [Daviesβ06]: true for π = 3 and for special case π΅ = πΎ π , with π· π = 2 .
Main Result Theorem A. For every π΅ β β πΓπ with ||π΅|| β€ 1 and π β (0,1) there is a perturbation πΉ such that π π π΅ + πΉ β€ 4π 3/2 π Implies every matrix has a 1/ππππ§(π) perturbation with π π β€ ππππ§(π) Implied by a stronger probabilistic result on condition number of eigenvalues.
Main Result Theorem A. For every π΅ β β πΓπ with ||π΅|| β€ 1 and π β (0,1) there is a perturbation πΉ such that π π π΅ + πΉ β€ 4π 3/2 π Implies every matrix has a 1/ππππ§(π) perturbation with π π β€ ππππ§(π) Implied by a stronger probabilistic result on condition number of eigenvalues.
Main Result Theorem A. For every π΅ β β πΓπ with ||π΅|| β€ 1 and π β (0,1) there is a perturbation πΉ such that π π π΅ + πΉ β€ 4π 3/2 π Implies every matrix has a 1/ππππ§(π) perturbation with π π β€ ππππ§(π) Implied by a stronger probabilistic result on eigenvalue condition numbers.
Probabilistic Analysis of π π Theorem B. Assume ||π΅|| β€ 1 and let π» have i.i.d. complex standard Gaussian entries. Let π 1 , β¦ π π be the eigenvalues of π΅ + πΏπ» .
Probabilistic Analysis of π π Theorem B. Assume ||π΅|| β€ 1 and let π» have i.i.d. complex standard Gaussian entries. Let π 1 , β¦ π π be the eigenvalues of π΅ + πΏπ» . 1 π¨ = π¦ + ππ§ where π¦, π§~π 0, 2
Probabilistic Analysis of π π Theorem B. Assume ||π΅|| β€ 1 and let π» have i.i.d. complex standard Gaussian entries. Let π 1 , β¦ π π be the eigenvalues of π΅ + πΏπ» . Then for any open ball πΆ β β : π 1 π π 2 π π β€ π 3 π½ ΰ· ππΏ 2 β π€ππ(πΆ) π 2 π 4 π π βπΆ
Probabilistic Analysis of π π Theorem B. Assume ||π΅|| β€ 1 and let π» have i.i.d. complex standard Gaussian entries. Let π 1 , β¦ π π be the eigenvalues of π΅ + πΏπ» . Then for any open ball πΆ β β : π 1 π π 2 π π β€ π 3 π½ ΰ· ππΏ 2 β π€ππ(πΆ) π 2 π 4 π π βπΆ cf. Precise asymptotic results for π΅ = 0 [Chalker- Mehligβ98,β¦Bourgade - Dubachβ18,Fyodorovβ18] and π΅ = Toeplitz [Davies- Hagerβ08,β¦Basak -Paquette- Zeitouniβ14 -18, Sjostrand- Vogelβ18]
Recommend
More recommend