quantitative diagonalizability
play

Quantitative Diagonalizability Part I: Three Measures of - PowerPoint PPT Presentation

Quantitative Diagonalizability Part I: Three Measures of Nonnormality pseudospectrum || 1 || 1 pseudospectrum || 1


  1. Quantitative Diagonalizability Part I: Three Measures of Nonnormality

  2. πœ— βˆ’ pseudospectrum Ξ› πœ— 𝑁 ≔ 𝑨 ∈ β„‚ ∢ || 𝑨 βˆ’ 𝑁 βˆ’1 || β‰₯ πœ— βˆ’1

  3. πœ— βˆ’ pseudospectrum Ξ› πœ— 𝑁 ≔ 𝑨 ∈ β„‚ ∢ || 𝑨 βˆ’ 𝑁 βˆ’1 || β‰₯ πœ— βˆ’1 = {𝑨 ∈ β„‚ ∢ 𝜏 π‘œ 𝑨 βˆ’ 𝑁 ≀ πœ— } = {𝑨 ∈ β„‚: 𝑨 ∈ π‘‘π‘žπ‘“π‘‘ 𝐡 + 𝐹 , ||𝐹|| ≀ πœ—}

  4. πœ— βˆ’ pseudospectrum Ξ› πœ— 𝑁 ≔ 𝑨 ∈ β„‚ ∢ || 𝑨 βˆ’ 𝑁 βˆ’1 || β‰₯ πœ— βˆ’1 For normal matrices, Ξ› πœ— 𝑁 = Ξ› 0 𝑁 + 𝐸 0, πœ—

  5. Pseudospectrum of Toeplitz Example

  6. πœ— βˆ’ pseudospectrum Ξ› πœ— 𝑁 ≔ 𝑨 ∈ β„‚ ∢ || 𝑨 βˆ’ 𝑁 βˆ’1 || β‰₯ πœ— βˆ’1 e.g. discretization of pde from acoustics:

  7. πœ— βˆ’ pseudospectrum Ξ› πœ— 𝑁 ≔ 𝑨 ∈ β„‚ ∢ || 𝑨 βˆ’ 𝑁 βˆ’1 || β‰₯ πœ— βˆ’1 = {𝑨 ∈ β„‚ ∢ 𝜏 π‘œ 𝑨 βˆ’ 𝑁 ≀ πœ— } = 𝑨 ∈ β„‚: 𝑨 ∈ π‘‘π‘žπ‘“π‘‘ 𝐡 + 𝐹 , ||𝐹|| ≀ πœ— Ξ› πœ— 𝑁 βŠ‚ Ξ› 0 𝑁 + πœ† 𝑓 𝑁 𝐸 0, πœ— [Bauer-Fike]: For distinct eigs Ξ› πœ— 𝑁 = Ξ› 0 𝑁 +βˆͺ 𝑗 𝐸(πœ‡ 𝑗 , πœ† πœ‡ 𝑗 πœ—) + 𝑝(πœ—)

  8. Part II: Davies’ Conjecture (with Jess Banks, Archit Kulkarni, Satyaki Mukherjee)

  9. Diagonalization 𝐡 ∈ β„‚ π‘œΓ—π‘œ is diagonalizable if 𝐡 = π‘ŠπΈπ‘Š βˆ’1 for invertible π‘Š , diagonal 𝐸 . Every matrix is a limit of diagonalizable matrices. Let πœ† 𝑓 𝐡 ≔ ||π‘Š|| β‹… ||π‘Š βˆ’1 || be the eigenvector condition number of 𝐡 . πœ† 𝑓 β‰ͺ ∞ πœ† 𝑓 = ∞ Question: Given a matrix 𝐡 and πœ€ > 0 , what is min{πœ† 𝑓 𝐡 + 𝐹 : ||𝐹|| ≀ πœ€} ?

  10. Diagonalization 𝐡 ∈ β„‚ π‘œΓ—π‘œ is diagonalizable if 𝐡 = π‘ŠπΈπ‘Š βˆ’1 for invertible π‘Š , diagonal 𝐸 . Every matrix is a limit of diagonalizable matrices. Let πœ† 𝑓 𝐡 ≔ ||π‘Š|| β‹… ||π‘Š βˆ’1 || be the eigenvector condition number of 𝐡 . πœ† 𝑓 β‰ͺ ∞ πœ† 𝑓 𝐡 = 1 for normal, ∞ for nondiagonalizable πœ† 𝑓 = ∞ Question: Given a matrix 𝐡 and πœ€ > 0 , what is min{πœ† 𝑓 𝐡 + 𝐹 : ||𝐹|| ≀ πœ€} ?

  11. Diagonalization 𝐡 ∈ β„‚ π‘œΓ—π‘œ is diagonalizable if 𝐡 = π‘ŠπΈπ‘Š βˆ’1 for invertible π‘Š , diagonal 𝐸 . Every matrix is a limit of diagonalizable matrices. Let πœ† 𝑓 𝐡 ≔ ||π‘Š|| β‹… ||π‘Š βˆ’1 || be the eigenvector condition number of 𝐡 . πœ† 𝑓 β‰ͺ ∞ πœ† 𝑓 = ∞ Question: Given a matrix 𝐡 and πœ€ > 0 , what is min{πœ† 𝑓 𝐡 + 𝐹 : ||𝐹|| ≀ πœ€} ?

  12. Motivation: Computing Matrix Functions Problem. Compute 𝑔(𝐡) for analytic function 𝑔 , e.g. 𝑔 𝑨 = 𝑓 𝑨 , 𝑨 π‘ž . NaΓ―ve Approach . 𝑔 𝐡 = π‘Šπ‘” 𝐸 π‘Š βˆ’1 . Highly unstable if πœ† 𝑓 (𝐡) is big. e.g. π‘œ Γ— π‘œ Toeplitz: πœ† 𝑓 (𝐡 + 𝐹) π‘œ = 100 𝐹~ Gaussian πœ† 𝑓 𝐡 = 2 π‘œβˆ’1 β‰ˆ 10 30 βˆ₯ 𝐹 βˆ₯ Empirically: 𝐡 is close to a matrix with much better πœ† 𝑓 …

  13. Motivation: Computing Matrix Functions Problem. Compute 𝑔(𝐡) for analytic function 𝑔 , e.g. 𝑔 𝑨 = 𝑓 𝑨 , 𝑨 π‘ž . NaΓ―ve Approach . 𝑔 𝐡 = π‘Šπ‘” 𝐸 π‘Š βˆ’1 . Highly unstable if πœ† 𝑓 (𝐡) is big. e.g. π‘œ Γ— π‘œ Toeplitz: πœ† 𝑓 (𝐡 + 𝐹) π‘œ = 100 𝐹~ Gaussian πœ† 𝑓 𝐡 = 2 π‘œβˆ’1 β‰ˆ 10 30 βˆ₯ 𝐹 βˆ₯ Empirically: 𝐡 is close to a matrix with much better πœ† 𝑓 …

  14. Motivation: Computing Matrix Functions Problem. Compute 𝑔(𝐡) for analytic function 𝑔 , e.g. 𝑔 𝑨 = 𝑓 𝑨 , 𝑨 π‘ž . NaΓ―ve Approach . 𝑔 𝐡 = π‘Šπ‘” 𝐸 π‘Š βˆ’1 . Highly unstable if πœ† 𝑓 (𝐡) is big. e.g. π‘œ Γ— π‘œ Toeplitz, n=100: πœ† 𝑓 (𝐡 + 𝐹) π‘œ = 100 𝐹~ Gaussian πœ† 𝑓 𝐡 = 2 π‘œβˆ’1 β‰ˆ 10 30 βˆ₯ 𝐹 βˆ₯

  15. Motivation: Computing Matrix Functions Problem. Compute 𝑔(𝐡) for analytic function 𝑔 , e.g. 𝑔 𝑨 = 𝑓 𝑨 , 𝑨 π‘ž . NaΓ―ve Approach . 𝑔 𝐡 = π‘Šπ‘” 𝐸 π‘Š βˆ’1 . Highly unstable if πœ† 𝑓 (𝐡) is big. e.g. π‘œ Γ— π‘œ Toeplitz, n=100: πœ† 𝑓 (𝐡 + 𝐹) 𝐹~ Gaussian πœ† 𝑓 𝐡 = 2 π‘œβˆ’1 β‰ˆ 10 30 βˆ₯ 𝐹 βˆ₯ experiment by M. Embree Empirically: 𝐡 is close to a matrix with much better πœ† 𝑓 …

  16. Motivation: Computing Matrix Functions Problem. Compute 𝑔(𝐡) for analytic function 𝑔 , e.g. 𝑔 𝑨 = 𝑓 𝑨 , 𝑨 π‘ž . NaΓ―ve Approach . 𝑔 𝐡 = π‘Šπ‘” 𝐸 π‘Š βˆ’1 . Highly unstable if πœ† 𝑓 (𝐡) is big. e.g. π‘œ Γ— π‘œ Toeplitz, n=100: πœ† 𝑓 (𝐡 + 𝐹) 𝐹~ Gaussian πœ† 𝑓 𝐡 = 2 π‘œβˆ’1 β‰ˆ 10 30 βˆ₯ 𝐹 βˆ₯ Empirically : 𝐡 is close to a matrix with much better πœ† 𝑓 .

  17. Idea. Approximate 𝑔(𝐡) by 𝑔 𝐡 + 𝐹 for some small 𝐹 . e.g. 𝑔 𝐡 = 𝐡 πœ€ E = randn(n)*delta [V,D]=eig(A+E) πœ€ S = V*D.^(1/2)*inv(V)

  18. Idea. Approximate 𝑔(𝐡) by 𝑔 𝐡 + 𝐹 for some small 𝐹 . e.g. 𝑔 𝐡 = 𝐡 πœ€ E = randn(n)*delta [V,D]=eig(A+E) πœ€ S = V*D.^(1/2)*inv(V)

  19. Idea. Approximate 𝑔(𝐡) by 𝑔 𝐡 + 𝐹 for some small 𝐹 . e.g. 𝑔 𝐡 = 𝐡 πœ€ E = randn(n)*delta [V,D]=eig(A+E) πœ€ S = V*D.^(1/2)*inv(V) experiment by M. Embree

  20. Approximate Diagonalization Theorem. [Davies’06] For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that π‘œβˆ’1 π‘œ πœ† 𝑓 𝐡 + 𝐹 ≀ 𝐷 πœ€ Conjecture. For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that πœ† 𝑓 𝐡 + 𝐹 ≀ 𝐷 π‘œ πœ€ [Davies’06]: true for π‘œ = 3 and for special case 𝐡 = 𝐾 π‘œ , with 𝐷 π‘œ = 2 .

  21. Approximate Diagonalization Theorem. [Davies’06] For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that π‘œβˆ’1 π‘œ πœ† 𝑓 𝐡 + 𝐹 ≀ 𝐷 πœ€ Conjecture. For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that πœ† 𝑓 𝐡 + 𝐹 ≀ 𝐷 π‘œ πœ€ [Davies’06]: true for π‘œ = 3 and for special case 𝐡 = 𝐾 π‘œ , with 𝐷 π‘œ = 2 .

  22. Approximate Diagonalization Theorem. [Davies’06] For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that π‘œβˆ’1 π‘œ πœ† 𝑓 𝐡 + 𝐹 ≀ 𝐷 πœ€ Conjecture. For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that πœ† 𝑓 𝐡 + 𝐹 ≀ 𝐷 π‘œ πœ€ [Davies’06]: true for π‘œ = 3 and for special case 𝐡 = 𝐾 π‘œ , with 𝐷 π‘œ = 2 .

  23. Main Result Theorem A. For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that πœ† 𝑓 𝐡 + 𝐹 ≀ 4π‘œ 3/2 πœ€ Implies every matrix has a 1/π‘žπ‘π‘šπ‘§(π‘œ) perturbation with πœ† 𝑓 ≀ π‘žπ‘π‘šπ‘§(π‘œ) Implied by a stronger probabilistic result on condition number of eigenvalues.

  24. Main Result Theorem A. For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that πœ† 𝑓 𝐡 + 𝐹 ≀ 4π‘œ 3/2 πœ€ Implies every matrix has a 1/π‘žπ‘π‘šπ‘§(π‘œ) perturbation with πœ† 𝑓 ≀ π‘žπ‘π‘šπ‘§(π‘œ) Implied by a stronger probabilistic result on condition number of eigenvalues.

  25. Main Result Theorem A. For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that πœ† 𝑓 𝐡 + 𝐹 ≀ 4π‘œ 3/2 πœ€ Implies every matrix has a 1/π‘žπ‘π‘šπ‘§(π‘œ) perturbation with πœ† 𝑓 ≀ π‘žπ‘π‘šπ‘§(π‘œ) Implied by a stronger probabilistic result on eigenvalue condition numbers.

  26. Probabilistic Analysis of πœ† 𝑗 Theorem B. Assume ||𝐡|| ≀ 1 and let 𝐻 have i.i.d. complex standard Gaussian entries. Let πœ‡ 1 , … πœ‡ π‘œ be the eigenvalues of 𝐡 + 𝛿𝐻 .

  27. Probabilistic Analysis of πœ† 𝑗 Theorem B. Assume ||𝐡|| ≀ 1 and let 𝐻 have i.i.d. complex standard Gaussian entries. Let πœ‡ 1 , … πœ‡ π‘œ be the eigenvalues of 𝐡 + 𝛿𝐻 . 1 𝑨 = 𝑦 + 𝑗𝑧 where 𝑦, 𝑧~𝑂 0, 2

  28. Probabilistic Analysis of πœ† 𝑗 Theorem B. Assume ||𝐡|| ≀ 1 and let 𝐻 have i.i.d. complex standard Gaussian entries. Let πœ‡ 1 , … πœ‡ π‘œ be the eigenvalues of 𝐡 + 𝛿𝐻 . Then for any open ball 𝐢 βŠ‚ β„‚ : πœ‡ 1 π‘œ πœ† 2 πœ‡ 𝑗 ≀ πœ‡ 3 𝔽 ෍ πœŒπ›Ώ 2 β‹… π‘€π‘π‘š(𝐢) πœ‡ 2 πœ‡ 4 πœ‡ 𝑗 ∈𝐢

  29. Probabilistic Analysis of πœ† 𝑗 Theorem B. Assume ||𝐡|| ≀ 1 and let 𝐻 have i.i.d. complex standard Gaussian entries. Let πœ‡ 1 , … πœ‡ π‘œ be the eigenvalues of 𝐡 + 𝛿𝐻 . Then for any open ball 𝐢 βŠ‚ β„‚ : πœ‡ 1 π‘œ πœ† 2 πœ‡ 𝑗 ≀ πœ‡ 3 𝔽 ෍ πœŒπ›Ώ 2 β‹… π‘€π‘π‘š(𝐢) πœ‡ 2 πœ‡ 4 πœ‡ 𝑗 ∈𝐢 cf. Precise asymptotic results for 𝐡 = 0 [Chalker- Mehlig’98,…Bourgade - Dubach’18,Fyodorov’18] and 𝐡 = Toeplitz [Davies- Hager’08,…Basak -Paquette- Zeitouni’14 -18, Sjostrand- Vogel’18]

Recommend


More recommend