qcd properties
play

QCD - properties confinement, Higgs mechanism more on confinement - PowerPoint PPT Presentation

QCD - properties confinement, Higgs mechanism more on confinement (i) the absence of free quarks in Nature [but quarks could combine with a fundamental coloured scalar] (ii) observable particles are colour singlets [but this confuses


  1. Solving Schwinger- Dyson Equations • we need to deal with divergent integrals • we need an expression for � . Approximating this as the bare vertex is a typical. • we need to evaluate some pretty nasty integrals • we need to solve a(many) nonlinear integral equation(s).

  2. Solving Schwinger- Dyson Equations Wick rotate to Euclidean space q 0 → iq 4 d 4 q E 1 E − λ � − A ( − p 2 E ) p 2 E − B ( − p 2 E ) = − p 2 Aq 2 (2 π ) 4 2 E + B A = 1 � Λ q 3 E dq E 1 α = 2 π 2 E + m 2 + λα / 2 q 2 (2 π ) 4 0 1 2 λπ 2 Λ 2 π 2 α m 2 = m 2 Λ 2 = 0 + 1 − 1 1 − 1 2 λπ 2 2 λπ 2

  3. Ladder QED − 1 − 1 = − � � − i g µ ν − (1 − � ) k µ k ν D µ ν = k 2 + i � k 2 i S ( p ) = A ( p 2 )/ p − B ( p 2 ) d 4 q γ µ D µ ν ( p + q )( A / q + B ) γ ν � p − m − e 2 A / p − B = / (2 π ) 4 A 2 q 2 − B 2

  4. Ladder QED d 4 q γ µ D µ ν ( p + q )( A / q + B ) γ ν � p − m − e 2 A / p − B = / (2 π ) 4 A 2 q 2 − B 2 A ( ξ = 0) = 1 d 4 q (3 + 0) B ( q 2 ) � B ( p 2 ) = m − ie 2 (2 π ) 4 ( q 2 − B 2 )( p − q ) 2 � 1 � 1 q 2 θ ( q > p ) + 1 � ( p − q ) 2 = 2 π 2 p 2 θ ( p > q ) d Ω 4

  5. ladder QED � p E � Λ � � E ) = 3 e 2 1 B ( q ) B ( q ) B ( − p 2 dqq 3 q 2 + B 2 + dqq q 2 + B 2 p 2 8 π 2 0 p E E � p E E B � = − 3 e 2 B d p 4 dqq 3 � = q 2 + B 2 8 π 2 dp 2 0 E E B � ) � = − 3 e 3 B ( p 4 16 π 2 p 2 E p 2 E + B 2

  6. ladder QED E B � ) � = − 3 e 3 B ( p 4 16 π 2 p 2 E p 2 E + B 2 � p E � Λ � � E ) = 3 e 2 1 B ( q ) B ( q ) B ( − p 2 dqq 3 q 2 + B 2 + dqq q 2 + B 2 p 2 8 π 2 0 p E E ( p 4 B � ) | p =0 = 0 ( B + p 2 B � ) | p = Λ = 0 B → p − 1 ± √ α > α � ≡ π 1 − 3 e 2 / (4 π 2 ) 3

  7. numerical methods expand A(p) in a convenient basis � A ( p ) = c i T i ( p ) i discretise A ( p ) → A i = A ( p i ) x i = f i ( { x } )

  8. numerical methods x i = f i ( { x } ) (i) iterate x i | n +1 = f i ( { x } n ) (ii) iterative Newton-Raphson � � − δ ij + ∂ f i � | x i δ x j = x i − f i ( { x } ) ∂ x j j x i | n +1 = x i | n + δ x i (iii) minimise � ( x i − f i ( { x } )) 2 G ( { x } ) = i

  9. final words Thus it is vital that the practitioner not abandon theoretical investigations too early. One must carefully track and deal with singularities in the equations, understand asymptotic behaviour, and develop decent analytic approximations to have any hope • All of the techniques discussed here will fail miserably unless one starts very close to the solution. • how does one truncate SD equations (beyond convenience)? • be prepared for heartbreak

  10. QCD ghost quark - 1 - 1 - 1 - 1 = = - - gluon - 1 - 1 = - - - - - -

  11. Exotic Theory: Schwinger-Dyson Equations J. Meyers, PhD Thesis, Pittsburgh, 2014.

  12. Bethe-Salpeter

  13. 2VPI = + regular = = 2VPI

  14. Exotic Theory: Schwinger-Dyson Equations electron photon − 1 − 1 − 1 − 1 − 1 = = − − E.S. Swanson, arXiv 1008.4337

  15. Results: QED3 P.M. Lo, E.S. Swanson, PRD83, 065006 (2011) P.M. Lo, E.S. Swanson, PRD81, 034030 (2010) BC+CP BC RL CBC 1 . 00 · N A N � (CBC) = � � � � 2 π � ¯ 1 . 10 · N A N � (RL) = ψψ � ( N f ) = aN f exp � � N � /N f � 1 N � (BC) = 1 . 21 · N A N � (CP) = �

  16. Results: QED3 P.M. Lo, E.S. Swanson, PRD83, 065006 (2011) P.M. Lo, E.S. Swanson, PRD81, 034030 (2010) parity preserving maximal parity breaking RL parity symmetric: solns are (M,-M) maximally broken (M,M) A solution exists for eta<0.4, implying parity symmetry breaking! CBC solution no solution η = N + − N − N + + N −

  17. Results: QED3, finite temperature and density P.M. Lo, E.S. Swanson, PRD89, 025015 (2014) P.M. Lo, E.S. Swanson, PLB697, 164 (2011) 0.2 symmetric First calculation with full frequency depencence in a gauge theory. First 0.15 calc in QED3 the treat the IR-div seriously. T c 0.1 broken 0.05 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 µ

  18. Results: QCD propagators J. Meyers, E.S. Swanson, PRD90, 045037 (2014) 3.5 1 - 1 3 0.8 2.5 - M [GeV], 1/A 2 0.6 Z NOT TRUE that the mass of the visible 1.5 universe comes from the Higgs… it 0.4 comes from this —-> 1 0.2 0.5 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 0 1 2 3 4 5 6 7 8 p [GeV] p [GeV] 11 4 10 - 1 3.5 9 3 8 - 7 2.5 G [GeV -2 ] 6 2 h 5 1.5 4 3 1 2 0.5 1 0 0 0.01 0.1 1 10 100 0.01 0.1 1 10 100 p 2 [GeV 2 ] p 2 [GeV 2

  19. Exotic Theory: Schwinger-Dyson and Bethe-Salpeter Equations J. Meyers, E.S. Swanson, PRD87, 036009 (2013) k + ; ¹ 2VPI P = k ¡ ;º = 2VPI + + +... +

  20. Results: Glueballs d 4 q � (2 π ) 4 χ αβ ( q + , q − ) C αβ ig 2 N χ µ ν ( k + , k − ) = ..µ ν G ( q + ) G ( q − ) d 4 q � (2 π ) 4 χ αβ ( q + , q − ) T αβ + ig 2 N ..µ ν ( q + , q − , k + , k − ) G ( q + ) G ( q − ) G ( Q ) d 4 q � + ig 2 N (2 π ) 4 χ ( q + , q − ) G µ ν ( q + , q − , k + , k − ) H ( q + ) H ( q − ) H ( Q ) + ig 2 � tr [ γ µ S ( q + ) χ χ ( q + , q − ) S ( q − ) γ ν S ( Q )] 2 d 4 q � ig 2 N χ ( k + , k − ) = (2 π ) 4 χ ( q + , q − ) H ( q + , q − , k + , k − ) H ( q + ) H ( q − ) G ( Q ) d 4 q � (2 π ) 4 χ αβ ( q + , q − ) B αβ ( q + , q − , k + , k − ) G ( q + ) G ( q − ) H ( Q ) + ig 2 N � g 2 C F χ ( k + , k − ) = γ α S ( k − + q − ) γ β G ( q + ) G ( q − ) χ αβ ( q + , q − ) χ � + ig 2 C F γ µ S ( q + ) χ χ ( q + , q − ) S ( q − ) γ ν G ( Q ) P µ ν ( Q )

  21. Results: Glueballs J. Meyers, E.S. Swanson, PRD87, 036009 (2013) 4 3.5 3 0 ++ 0 -+ 2.5 1/ � 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 |P| (GeV)

  22. Schwinger-Dyson Equations − 1 − 1 − 1 − 1 − 1 = = − − Vertex Ansa ̎ tze iS − 1 = A / p − B i Γ µ RL ( k, p ) = γ µ CBC ( k, p ) = 1 i Γ µ 2( A ( k ) + A ( p )) γ µ BC ( k, p ) = 1 2 ( A ( k ) + A ( p )) γ µ + 1 A ( k ) − A ( p ) p )( k µ + p µ ) − B ( k ) − B ( p ) ( k µ + p µ ) i Γ µ (/ k + / 2 k 2 − p 2 k 2 − p 2 CP ( k, p ) = 1 A ( k ) − A ( p ) γ µ ( k 2 − p 2 ) − ( k + p ) µ (/ i Γ µ � � k − / p ) 2 d ( k, p ) d ( k, p ) = ( k 2 − p 2 ) 2 + ( M ( k ) 2 + M ( p ) 2 ) 2 k 2 + p 2

  23. k + ; ¹ P = + k ¡ ;º + = + = +

  24. results: ghost 4 3.5 3 2.5 h 2 1.5 1 0 2 4 6 8 10 12 14 16 18 20 p 2 (GeV 2 ) I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, Phys. Lett. B676 , 69 (2009)

  25. results: quark f π = 240 MeV � ¯ ψψ � (1 GeV) = ( � 251 MeV) 3 Z ( k ) S ( k ) = i 1 Z k − M ( k ) / 0.8 Z, M (GeV) 0.6 0.4 M 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 p (GeV) P.O. Bowman et al., Phys. Rev. D71 , 054507 (2005).

  26. more on confinement D ( p ) = − 1 1 p 2 1 + u ( p ) u ( p ) → − 1 p → 0 Kugo-Ojima confinement criterion Alkofer, von Smekal, Fischer

  27. Heavy Quarks modelling, quarks, heavy quarks

  28. challenges QCD is • many body • relativistic • strong coupling (contrast to QED) • quantum • nonlinear

  29. Modelling QCD ‣ physical pictures can change depending on the ‣ scale quark mass, glue ‣ observables ρ decay vs. ρ scattering ‣ gauge confinement in Coulomb gauge vs. Weyl gauge

  30. Modelling QCD ‣ we seek to understand low energy hadronic physics -- we are fortunate that we have the theory, but it is not always helpful! h 2 − ¯ q i q j ‣ cf. the theory of DNA: � � 2 m ∇ 2 H = i + r ij i i<j ‣ to make progress we need to identify the appropriate effective degrees of freedom and their interactions ex: the bag model fermions current quarks bosons bag pressure (+ perturbative one gluon exchange) ex: the flux tube model fermions constituent quarks bosons flux tubes

  31. Modelling QCD ‣ spontaneous chiral symmetry breaking implies both the existence of Goldstone bosons and constituent quarks current quarks evolve into constituent quarks at scales < Λ QCD ‣ it is the structure of the vacuum that gives chiral symmetry breaking and confinement it is desirable to incorporate the physics of the vacuum and chiral symmetry breaking into the model from the beginning ‣ effective degrees of freedom should be derived from QCD to the extent possible only in this way can we recover perturbative QCD in the high energy regime

  32. Constituent Quarks pre-QCD quarks: m~ 5 GeV Copley, Karl, & Obryk: m ~ 330 MeV QCD: m(2 GeV) ~ 4 MeV but recall that quarks are not observable ⇒ different kinds of quark masses exist: current/constituent

  33. ��.��1���������������������������������� 4 3 2 ~ ~ ~ �����((������((�������((((������� 4 2 3 ✝ ✝ ✝ ✝ ✝ ✝ ������������� * �-����������-� k,m -k,m k,m -k,m ��� ��1����)+������ ����1����)+� ��) ��1����)+������ ����1����)+�

  34. Cb pm C † = η C d pm Cd † pm C † = η C b † pm

  35. (2 S +1) L J example L S J P C 0 0 0 − + 1 S 0 π 3 S 1 0 1 1 −− ρ 1 0 1 + − 1 P 1 h 1 1 1 (0 , 1 , 2) ++ 3 P (0 , 1 , 2) a 0 , a 1 , a 2 2 0 2 − + 1 D 2 π 2 2 1 (1 , 2 , 3) −− 3 D (1 , 2 , 3) ρ , ρ 2 , ρ 3 -+ +- -- not in the list: 0 , (even) , (odd) ‘(quantum number) exotics’ discovering such a state would be the first time a meson has been observed with no qq content

  36. Heavy Quarkonia ψ , Υ • Bohr levels with a Bohr radius (2/3m α ) ~ 0.01 s fm 3 3 3 1 • L , L , L & L splittings are due to tensor L+1 L-1 L L and spin-orbit interactions 3 1 • S - S splittings are due to the contact 1 0 interaction

  37. Constituent Quarks (heavy) spatial regimes: r ∼ 1 / 2 fm r < 1 / 10 fm r > 1 fm confinement one gluon exchange one pion exchange Lorentz structure: sources of spin-dependence are (i) gluon exchange (ii) corrections to the static potential (iii) meson exchange (Fock sector mixing) (iv) instanton forces

  38. make a (field-theoretic) Foldy-Wouthuysen transformation

  39. Interactions sig1_i*sig1_j = del_ij+ eps_ijk sig k so = B^2 so not spin- dependent σ .B σ .B σ .B σ .B (b) (a) zero hyperfine + tensor D 2 σ .B D 2 σ .B (d) (c) V V 1 2

  40. spin-dependence in the confinement potential examine in Coulomb gauge via the Foldy - W outhuysen transformation

  41. model building — more later V SI ( r ) = − 3 α s r + br 4 � σ q � � 1 + 2 � � σ ¯ q + σ q � � 1 � dV conf dV 1 dV 2 + σ ¯ q V SD ( r ) = + · L · L 4 m 2 4 m 2 2 m q m ¯ r dr r dr r dr q q q ¯ 1 1 � � + 3 σ q · ˆ q · ˆ V 3 + q V 4 r σ ¯ r − σ q · σ ¯ σ q · σ ¯ q 12 m q m ¯ 12 m q m ¯ q q �� σ q � � σ q − σ ¯ � � +1 − σ ¯ q q · L + (1) · L V 5 . m 2 2 m 2 m q m ¯ q q ¯ q Eichten & Feinberg Ng, Pantaleone, & Tye

  42. oge approximation/model spin dependence ⃗ 2 · − ⃗ ∗ λ 1 λ 2 U = ( V C + V so + V hyp ) 2 2 ( 1 1 V C = α r − απ 1 + 2 ) δ ( ⃗ r ) m 2 m 2 � � − 3( ⃗ r )( ⃗ r ) σ 1 · ⃗ σ 2 · ⃗ ⃗ σ 1 · ⃗ σ 2 − 8 π α V hyp = σ 2 δ ( ⃗ r ) 3 ⃗ σ 1 · ⃗ r 3 r 5 4 m 1 m 2 � � r · ( ⃗ p 1 ) ⃗ p 2 + ⃗ r · ⃗ p 2 4 r 3 ( ⃗ r × ⃗ p 1 · ⃗ σ 1 − ⃗ r × ⃗ p 2 · ⃗ σ 2 α α V so = − ) ⃗ p 1 · ⃗ − r 2 m 2 m 2 2 m 1 m 2 r 1 2 α 2 m 1 m 2 r 3 ( ⃗ σ 1 ) r × ⃗ p 1 · ⃗ σ 2 − ⃗ r × ⃗ p 2 · ⃗ −

Recommend


More recommend