qcd and statistical physics
play

QCD and statistical physics Stphane Munier CPHT, cole - PowerPoint PPT Presentation

QCD and statistical physics Stphane Munier CPHT, cole Polytechnique, CNRS Palaiseau, France Florence, February 1 High energy QCD hadron 1 hadron 2 b = impact parameter (proton, nucleus, photon...) Y = relative rapidity r : transverse


  1. QCD and statistical physics Stéphane Munier CPHT, École Polytechnique, CNRS Palaiseau, France Florence, February 1

  2. High energy QCD hadron 1 hadron 2 b = impact parameter (proton, nucleus, photon...) Y = relative rapidity r : transverse size of the projectile r 0 : transverse size of the target  k : transverse energy scale of the projectile   k 0 : transverse energy scale of the target  k k A  Y ,r = ∫ d 2 b A  b ,Y ,r = elastic amplitude k A  b ,Y ,r = fixed impact parameter amplitude ≤ 1 (High) energy dependence of QCD amplitudes?

  3. The Balitsky equation Balitsky (1996) Rapidity evolution of the scattering amplitude: = s N c T = 1 Tr  U U  , 〈 T 〉= A BFKL kernel; acts on transverse coordinates  N c Infinite hierarchy, more ∂  Y A =∗ A −〈 T T 〉 complex operators at each step ∂  Y 〈 T T 〉=∗〈 T T 〉−〈 T T T 〉 2 ∗〈 Tr  U U U U U U 〉  source terms  A ''mean field'' approximation gives the Balitsky-Kovchegov (simpler) equation: 〈 T T 〉=〈 T 〉〈 T 〉= A ⋅ A ⇒ ∂  Y A =∗ A − A ⋅ A  Balitsky (1996); Kovchegov (1999) Understand and solve the full high energy evolution equations! See also JIMWLK and further developments Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

  4. High energy QCD in the field-theory formulation Balitsky (1996) Inside the Balitsky equation: + ... Effective formulation: "Pomeron" diagrams Pomeron = = + + + + ... A ∂  Y A =∗ A ?

  5. Alternative philosophy Breakthrough by Mueller and Shoshi, 3 years ago: "Small x physics beyond the Kovchegov equation" This talk: Subsequent interpretation of their calculation in the light of some models well-known in statistical mechanics (namely reaction-diffusion processes ). go beyond the Mueller-Shoshi results simple picture, based on the parton model connects the QCD problem to more general physics and mathematics Instead of a direct approach, identify the universality class from the physics of the parton model, then apply general results!

  6. Outline High energy QCD and reaction-diffusion Field theory versus statistical methods for a simple particle model Statistical methods and application to QCD

  7. How a high rapidity hadron looks observer r 0 Y 0 = 0 Y 1  Y 0 rapidity in the frame of the observer

  8. How a high rapidity hadron looks k ' ~ k k 1  Y ~ 1  k ? n ≤ N Parton saturation: 1 2 n  k  T  k ~ s N k Number of partons n unitarity: T  r ≤ 1 ⇒ N = 1 2  Y  lnQ s 2  s 1 2 lnk 2 2  n − n N   n  ∂   Y n =−∂ lnk 2 BFKL ~ ∂ lnk n  n Noise term due to discreteness 2

  9. How a high rapidity hadron looks k ' ~ k k 1  Y ~ 1  k ? n ≤ N Parton saturation: 1 2 n  k  T  k ~ s 1 k unitarity: T  r ≤ 1 ⇒ N = 1 1-Fock state amplitude T 2  Y  lnQ s 2  s A =〈 T 〉 Physical amplitude: 2  s 2 lnk 2  s  T  ∂   Y T =−∂ lnk 2  T − T 2 BFKL ~ ∂ lnk T  T Noise term due to discreteness 2

  10. How a high rapidity hadron looks k ' ~ k k 1  t ~  Y ~ 1 k ? n ≤ N Parton saturation: 1 2 n  k  T  k ~ s 1 k unitarity: T  r ≤ 1 ⇒ N = 1 1-Fock state amplitude T 2  Y ~ X t lnQ s 2  s A =〈 T 〉 Physical amplitude: 2  s 2 ~ x lnk 2   T ∂ t T =−∂ x  T − T N  2 T  T branching diffusion ~ ∂ x Noise term due to discreteness

  11. Reaction-diffusion t t  t proba  t proba  t n  x ,t  N proba p x proba p proba  1 − t − t n  t  N − 2p  n  x ,t  n  x ,t  t  T = n N N N 1 x x 2  x,t  t  T T  x,t  t = T  x ,t  p  T  x  x ,t  T  x − x,t − 2T  x ,t  t T  x ,t − t T N  x,t  t    T 2 ∂ t T = −∂ x  T − T N  2   2 2 T  T − T ∂ t T =∂ x N T  1 − T  Prototype equation: sFKPP equation Fisher; Kolmogorov, Petrovsky, Piscunov (1937)

  12. Dictionary Reaction-diffusion High energy QCD 2 / k 0 2  ln  k Position x  Y  Time t Particle density T Partonic amplitude T 1 Maximum/equilibrium 2  s number of particles N 2 / k 0 2  ln  Q s Position of the wave front X Saturation scale sFKPP equation QCD evolution in the parton model 2   2 2  s  T  ∂   Y T =−∂ lnk 2  T − T 2 T  T − T ∂ t T =∂ x N T  1 − T 

  13. Outline High energy QCD and reaction-diffusion Field theory versus statistical methods for a simple particle model Statistical methods and application to QCD

  14. Simple particle model t  t t t t  t k particles added: k particles split, n-k do not split proba  t proba  1 − t  n  t  n  t  t = n  t  k  t  t  proba P n  k =  k   t  n k  1 − t  n − k = k −〈 k 〉 1 〈 k 〉= n  t define 〈〉= 0   t   2 〉= 1 〈 2 =〈 k −〈 k 〉 2 〉= n  t  k t  1 such that ∑ t  t ~± 1 〈 k 〉 dn dt = n   n  n  t  t = n  t  t  n  t   n  t  t  t    t  0 n What is, in average , the number of particles at time t? d 〈 n 〉 〈 n  t 〉 obtained by solving the trivial equation dt =〈 n 〉 4 t e 1 t 1 2 3

  15. Simple particle model t  t t t t  t k 2 k 1 particles added, particles removed proba  t proba  t n  t  N proba  1 − t − t n  t  N  n  t  t = n  t  k 1  t  t − k 2  t  t  n  t  proba P n  k 1, k 2 =  k 1 k 2   t  k 1   t n  t  N   1 − t − t n  t  N  k 2 n − k 1 − k 2 n N   n  1  n N   2 〈〉= 0 dn dt = n − n 2 〉= 1 〈 dt n  t  〈 n  t 〉 is not obtained by solving a trivial equation! N d 〈 n 〉 dt =〈 n 〉− 1 2 〉 N 〈 n 2 〉 d 〈 n ...infinite hierarchy! = dt similar to the Balitsky equation in 0D 2 d 〈 n 〉 dt =〈 n 〉−〈 n 〉 4 Mean field approximation: N 1 similar to the Balitsky-Kovchegov equation t 1 2 3

  16. Field-theoretical formulation Doi (1975) Mueller (1995) Statistical formulation: Shoshi, Xiao (2005) Evolution of Poissonian states evolution of fixed particle number states n P z  n = z − z n! e n  t  n  t  z  t  exp  − ∫ dt [ z  N  zzz  zzzz  ]  dt − 1  z − zzz  1 d 〈 n  t 〉=〈 z  t 〉 Path integral average, with weight + + + + ... 〈 n  t 〉= 6 − 24 − 2 3t 4t + ... t 2 e 3 e e 2t N e N N 〈 n  t 〉= N  1 − Ne − Nexp − t  b  ∞ db − t ∫ 1  b e After Borel resummation: 0

  17. Statistical method proba  t N   n  1  n N   2 dn dt = n − n proba  t n  t  proba  1 − t − t n  t  N N  n N = 5000 t

  18. Statistical method proba  t N   n  1  n N   2 dn dt = n − n proba  t n  t  proba  1 − t − t n  t  N N  n N = 5000 2 dn dt = n − n N ? t

  19. Statistical method proba  t N   n  1  n N   2 dn dt = n − n proba  t n  t  proba  1 − t − t n  t  N N  n N = 5000 2 dn dt = n − n N ? dn dt = n   n 

  20. Statistical method proba  t N   n  1  n N   2 dn dt = n − n proba  t n  t  proba  1 − t − t n  t  N N  n N = 5000 2 dn dt = n − n N 〈 n 〉 2 mean field solution d 〈 n 〉 dt =〈 n 〉−〈 n 〉 N 1 ≪ n ≪ N t dn dt = n   n  t

  21. Statistical method proba  t N   n  1  n N   2 dn dt = n − n proba  t n  t  proba  1 − t − t n  t  N N  n N = 5000 2 dn dt = n − n N 1 ≪ n ≪ N t dn dt = n   n  t 2 dn dt = n − n Solution of the mean-field equation N dn dt = n   n  Solution of for t n  t = n with the initial condition Field-theoretical result: ⇔ N ∞ 〈 n  t 〉= ∫ − t − nexp − t  dt ne 〈 n  t 〉= N  1 − Ne − Nexp − t  b  ∞ db 1  N 0 − t ∫ 1  b e − t − t  n e 0 + Well-established systematics + Simple, intuitive _ _ Complex, abstract No systematics

Recommend


More recommend