q sat quantum communication uplink to a 3u cubesat
play

QSat: Quantum Communication Uplink to a 3U CubeSat Feasibility - PowerPoint PPT Presentation

QSat: Quantum Communication Uplink to a 3U CubeSat Feasibility & Design QCrypt 2018 Shanghai, China 27 th August 2018 Sebastian Philipp Neumann Rupert Ursin Group IQOQI Vienna Overview QSat mission setup Why a CubeSat?


  1. Q³Sat: Quantum Communication Uplink to a 3U CubeSat – Feasibility & Design QCrypt 2018 Shanghai, China 27 th August 2018 Sebastian Philipp Neumann Rupert Ursin Group IQOQI Vienna

  2. Overview • Q³Sat mission setup • Why a CubeSat? • Satellite design • Choice of orbit • Crucial parameters for high SNR and key rate • Expected performance 04/09/2018 sebastian.neumann@univie.ac.at 2

  3. Uplink Mission Setup Why uplink? - Simple setup on satellite - Usable for several protocols 04/09/2018 sebastian.neumann@univie.ac.at 3

  4. Why a CubeSat? 3U: 10x10x34cm, 4kg; ideal for precursor missions Figures: CubeSat design specification sheet by CalTech and http://spaceflight.com/schedule-pricing/ 04/09/2018 sebastian.neumann@univie.ac.at 4

  5. CubeSat-Design 04/09/2018 sebastian.neumann@univie.ac.at 5

  6. Block diagram 04/09/2018 sebastian.neumann@univie.ac.at 6

  7. Preliminary CAD drawing 04/09/2018 sebastian.neumann@univie.ac.at 7

  8. LEO Orbit Calculations LEO:  Link duration calculations by group - 500 km - >30° elevation of Carsten Scharlemann (FH Wiener - night only Neustadt): 04/09/2018 sebastian.neumann@univie.ac.at 8

  9. Signal-to-Noise Ratio > 4.8 for Bell test > 8.8 for QKD • � ��� ∝ 2� � � �� � accidental rate • � ��� = Λ� � � ��� optical error counts • Λ : total loss • �: coincidence window • � �� : noise count rate • � � : pair rate • � ��� : optical errors Λ ~ 60dB  low � �� and short � are crucial! 04/09/2018 sebastian.neumann@univie.ac.at 9

  10. Noise Counts • Dark counts: radiation  tiny 20 μ m detectors, shielding optional thermal  passive cooling in total max. 200 cps per detector E. Anisimova et al. , “Mitigating radiation damage of single photon detectors for space applications,” EPJ Quantum Technology , vol. 4, no. 1, p. 10, 2017. 04/09/2018 sebastian.neumann@univie.ac.at 10

  11. Attitude Control: XACT • Background counts: prop. to field of view (FOV)  has to be as small as possible (~100 μ rad) Pictures + table from www.bluecanyontech.com Space heritage, ~40μrad precision without tracking!  In total, � �� ~ 480 cps (zenith) 580 cps (30° elevation) 04/09/2018 sebastian.neumann@univie.ac.at 11

  12. Coincidence Window • for E91 (entangled photon pairs): – On ground: Superconducting nanowire SPD, 19ps jitter (rms), “no” dark counts – On CubeSat: PDM: 35ps jitter, <5Hz dark counts – Time taggers: 3ps on ground / 20ps on Q³Sat � � � �  � ��� = 2 � ��� + � ���� + � ���� + � ����� = ���� • for DSP (decoy): – No detection on ground necessary, just limited by electronics  � ��� = ���� 04/09/2018 sebastian.neumann@univie.ac.at 12

  13. Trade-Off SNR vs. R sec 04/09/2018 sebastian.neumann@univie.ac.at 13

  14. Link Quality  Total key per year: 13 Mbit  20€ /kbit (launch & hardware only) � � : Fried parameter Fried parameter data taken from http://catserver.ing.iac.es/robodimm/ 04/09/2018 sebastian.neumann@univie.ac.at 14

  15. Performance • 71 435s link time / year – 13.0 Mbit / year with decoy – 4.0 Mbit / year with E91 • Launch + material cost: 500k€  20 € / kbit assuming lifetime of 2 years, but low threshold costs 04/09/2018 sebastian.neumann@univie.ac.at 15

  16. Publication 04/09/2018 sebastian.neumann@univie.ac.at 16

  17. Co-Authors Siddarth K. Joshi Matthias Fink Thomas Scheidl Rupert Ursin Carsten Scharlemann Erik Kerstel Sameh Abouagaga Mathieu Barthelemy Daanish Bambery Thank you for your attention! 04/09/2018 sebastian.neumann@univie.ac.at 17

Recommend


More recommend