pulsational pair instability sn
play

(Pulsational) Pair Instability SN Mathieu Renzo Collaborators: S. E. - PowerPoint PPT Presentation

Anton Pannekoek Institute (Pulsational) Pair Instability SN Mathieu Renzo Collaborators: S. E. de Mink, Y. G otberg, E. Zapartas, Bin R. Farmer, P . Marchant, B. Paxton C osmos 1 / 7 Anton Pannekoek Institute Late mass loss BBH-merger


  1. Anton Pannekoek Institute (Pulsational) Pair Instability SN Mathieu Renzo Collaborators: S. E. de Mink, Y. G¨ otberg, E. Zapartas, Bin R. Farmer, P . Marchant, B. Paxton C osmos 1 / 7

  2. Anton Pannekoek Institute Late mass loss BBH-merger EM counterpart ⇒ mass loss needs to be close to 2 nd core-collapse Observational evidence • Flash spectroscopy of SNe – e.g., Khazov et al. 2016 • narrow-lined SNe (Ibn & IIn) – e.g., Filippenko 1997, Smith 2016 • CSM-powered SLSNe – e.g., Chevalier & Fransson 1994, Smith 2007 • SN-impostors – e.g., Smith et al. 2008 • ... 2 / 7

  3. Anton Pannekoek Institute Late mass loss BBH-merger EM counterpart ⇒ mass loss needs to be close to 2 nd core-collapse Observational evidence Theoretical ideas • Flash spectroscopy of SNe • Wave driven mass loss – e.g., Khazov et al. 2016 – • narrow-lined SNe (Ibn & IIn) e.g., Shiode & Quataert 2014, Fuller et al. 2017 – e.g., Filippenko 1997, • Pulsational pair instability + Smith 2016 Core collapse • CSM-powered SLSNe – e.g., Barkat et al. 1967, – e.g., Chevalier & Fransson 1994, Chatzopoulos & Wheeler 2012, Smith 2007 Woosley 2017 • SN-impostors • ... – e.g., Smith et al. 2008 • ... 2 / 7

  4. Anton Pannekoek Institute Different behaviors with M ZAMS and/or M He IMF ( M ) ∝ M − 2 . 3 M He governs the fate, determines M BH cf. Woosley 2017 3 / 7

  5. Evolution during (P)PISN

  6. Radiation dominated: P tot ≃ P rad M He � 32 M ⊙ (Woosley 2017)

  7. M He = 46 M ⊙ , Z = 0.001 10 9 Fermi non rel. e ± T [ K ] pressure support � E γ � < E e ± Γ 1 < 4/3 � E γ � < 2 m e c 2 10 8 10 3 10 4 10 5 10 6 ρ [ g cm − 3 ] Preliminary calculations with

  8. 3. Explosive (oxygen) 2. Softening of EOS ignition triggers collapse Γ 1 < 4 3 4b. PISN: complete disruption 4a. Pulse with mass ejection 1. Pair production γγ → e + e − 7. BH 6. Entropy loss 5. ν -cooling and fuel depletion and contraction stabilize the core

  9. Anton Pannekoek Institute PPISN mass loss history Example: M He = 46 M ⊙ , Z = 0 . 001, no envelope 32.90 M tot 10.25 T c 32.85 Y R 10.00 32.80 A past wind mass loss N log 10 ( T c / [ K ]) Mass [ M ⊙ ] 9.75 32.75 I M I 9.50 32.70 L E R 32.65 9.25 P 32.60 9.00 32.55 0.6 0.5 0.4 0.3 0.2 0.1 0.0 time to CC [10 7 s] 6 / 7

  10. Anton Pannekoek Institute Discussion Can PPISN provide the mass aroung the BBH? Pros Cons � Timed shortly before BH formation ✗ Can possibly unbind the binary; ✗ v ejecta � 10 3 − 10 4 km s − 1 ; � Sufficient amount of mass; � Can increase eccentricity ⇒ ✗ Still have to survive τ GW . decrease τ GW ; ✗ ... � ... 7 / 7

  11. Institute Anton Pannekoek Discussion Can PPISN provide the mass aroung the BBH? Pros Cons � Timed shortly before BH formation ✗ Can possibly unbind the binary; ✗ v ejecta � 10 3 − 10 4 km s − 1 ; � Sufficient amount of mass; � Can increase eccentricity ⇒ ✗ Still have to survive τ GW . decrease τ GW ; ✗ ... � ... Bonus: • Naturally produces BHs of ∼ 30 M ⊙ • Can modify the BH mass function (2 nd mass gap) Correlation between M BH and EM signal? 7 / 7

Recommend


More recommend