pseudorandom generators from polarizing random walks
play

Pseudorandom generators from polarizing random walks Ka Kaave Ho - PowerPoint PPT Presentation

Pseudorandom generators from polarizing random walks Ka Kaave Ho Hossei eini (UC San Diego) Eshan Chattopadhyay (IAS Cornell) Pooya Hatami (UT Austin Ohio State) Shachar Lovett (UC San Diego) Outline Introduce Pseudorandom generators


  1. Pseudorandom generators from polarizing random walks Ka Kaave Ho Hossei eini (UC San Diego) Eshan Chattopadhyay (IAS → Cornell) Pooya Hatami (UT Austin → Ohio State) Shachar Lovett (UC San Diego)

  2. Outline Introduce Pseudorandom generators (PRGs) New approach to construct PRGs Open problems

  3. Introducing Pseudorandom generators(PRGs) Definition of pseudorandom generator (PRG):

  4. Introducing Pseudorandom generators(PRGs) Definition of pseudorandom generator (PRG): ℱ = 𝑔: −1,1 * ⟶ −1,1 family of functions : tests

  5. Introducing Pseudorandom generators(PRGs) Definition of pseudorandom generator (PRG): ℱ = 𝑔: −1,1 * ⟶ −1,1 family of functions : tests 𝑉 : Random variable uniform over −1,1 * : truly random object

  6. Introducing Pseudorandom generators(PRGs) Definition of pseudorandom generator (PRG): ℱ = 𝑔: −1,1 * ⟶ −1,1 family of functions : tests 𝑉 : Random variable uniform over −1,1 * : truly random object A random variable 𝑌 over −1,1 *

  7. Introducing Pseudorandom generators(PRGs) Definition of pseudorandom generator (PRG): ℱ = 𝑔: −1,1 * ⟶ −1,1 family of functions : tests 𝑉 : Random variable uniform over −1,1 * : truly random object A random variable 𝑌 over −1,1 * is 𝜁 -pseudorandom for ℱ if 𝔽𝑔 𝑌 − 𝔽𝑔 𝑉 ≤ 𝜁 ∀𝑔 ∈ ℱ

  8. Introducing Pseudorandom generators(PRGs) Definition of pseudorandom generator (PRG): ℱ = 𝑔: −1,1 * ⟶ −1,1 family of functions : tests 𝑉 : Random variable uniform over −1,1 * : truly random object A random variable 𝑌 over −1,1 * is 𝜁 -pseudorandom for ℱ ( 𝑌 𝜁 -fools ℱ ) if 𝔽𝑔 𝑌 − 𝔽𝑔 𝑉 ≤ 𝜁 ∀𝑔 ∈ ℱ

  9. Introducing Pseudorandom generators(PRGs) Goal: Construct random variable 𝑌 .

  10. Introducing Pseudorandom generators(PRGs) Question. What do we mean by “construct” 𝑌 ?

  11. Introducing Pseudorandom generators(PRGs) Question. What do we mean by “construct” 𝑌 ? An algorithm to sample random variable 𝑌 ∈ −1,1 *

  12. Introducing Pseudorandom generators(PRGs) Question. What do we mean by “construct” 𝑌 ? An algorithm to sample random variable 𝑌 ∈ −1,1 * Use few coin flips in the construction.

  13. Introducing Pseudorandom generators(PRGs) Question. What do we mean by “construct” 𝑌 ? An algorithm to sample random variable 𝑌 ∈ −1,1 * Use few coin flips in the construction. Algorithm should be “explicit”/ ”easy to compute”

  14. Introducing Pseudorandom generators(PRGs) Question. What do we mean by “construct” 𝑌 ? An algorithm to sample random variable 𝑌 ∈ −1,1 * Use few coin flips in the construction. Algorithm should be “explicit”/ ”easy to compute” 𝐻: −1,1 4 ⟶ −1,1 *

  15. Introducing Pseudorandom generators(PRGs) Question. What do we mean by “construct” 𝑌 ? An algorithm to sample random variable 𝑌 ∈ −1,1 * Use few coin flips in the construction. Algorithm should be “explicit”/ ”easy to compute” 𝐻: −1,1 4 ⟶ −1,1 * 𝑌 = 𝐻 𝑉 4 where 𝑉 4 is uniform over −1,1 4

  16. Introducing Pseudorandom generators(PRGs) Question. What do we mean by “construct” 𝑌 ? An algorithm to sample random variable 𝑌 ∈ −1,1 * Use few coin flips in the construction. Algorithm should be “explicit”/ ”easy to compute” 𝐻: −1,1 4 ⟶ −1,1 * 𝑌 = 𝐻 𝑉 4 where 𝑉 4 is uniform over −1,1 4 𝑡 is called seed length

  17. Example * characters Example 1: Tests: 𝔾 7 ℱ = 𝑔 𝑦 = ∏ 𝑦 : ∶ 𝑇 ⊆ 𝑜 :∈;

  18. Example * characters Example 1: Tests: 𝔾 7 ℱ = 𝑔 𝑦 = ∏ 𝑦 : ∶ 𝑇 ⊆ 𝑜 :∈; 𝑌 ∶ 𝜁 -bias random variable

  19. Example * characters Example 1: Tests: 𝔾 7 ℱ = 𝑔 𝑦 = ∏ 𝑦 : ∶ 𝑇 ⊆ 𝑜 :∈; 𝑌 ∶ 𝜁 -bias random variable • PRGs with optimal seed length 𝑃 log 𝑜/𝜁 are known.

  20. Example * characters Example 1: Tests: 𝔾 7 ℱ = 𝑔 𝑦 = ∏ 𝑦 : ∶ 𝑇 ⊆ 𝑜 :∈; 𝑌 ∶ 𝜁 -bias random variable • PRGs with optimal seed length 𝑃 log 𝑜/𝜁 are known. • Initiated by [Naor-Naor’90], found many applications

  21. Fractional PRGs 𝑔: −1,1 * → −1,1 1 -1 -1 1 1 1 -1 1

  22. Fractional PRGs 𝑔: −1,1 * → −1,1 multi−linear extension 𝑔: ℝ * → ℝ 1 -1 -1 1 1 1 -1 1

  23. Fractional PRGs 𝑔: −1,1 * → −1,1 multi−linear extension 𝑔: ℝ * → ℝ Only consider points in [−1,1] * so 𝑔: [−1,1] * → [−1,1] 1 -1 -1 1 1 1 -1 1

  24. Fractional PRGs Equivalent definition of PRG: 𝑌 ∈ −1,1 * ε -fools ℱ if 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁, ∀𝑔 ∈ ℱ 1 -1 -1 1 1 1 -1 1

  25. Fractional PRGs Equivalent definition of PRG: 𝑌 ∈ −1,1 * ε -fools ℱ if 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁, ∀𝑔 ∈ ℱ because 𝔽𝑔 𝑉 * = 𝑔 𝔽𝑉 * = 𝑔 0 1 -1 -1 1 1 1 -1 1

  26. Fractional PRGs PRG: random variable 𝑌 ∈ −1,1 * where 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁

  27. Fractional PRGs PRG: random variable 𝑌 ∈ −1,1 * where 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁 Fractional PRG (f-PRG): random variable 𝑌 ∈ [−1,1] * where 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁

  28. Fractional PRGs PRG: random variable 𝑌 ∈ −1,1 * where 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁 Fractional PRG (f-PRG): random variable 𝑌 ∈ [−1,1] * where 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁 1 -1 -1 1 1 1 -1 1

  29. Fractional PRGs PRG: random variable 𝑌 ∈ −1,1 * where 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁 Fractional PRG (f-PRG): random variable 𝑌 ∈ [−1,1] * where 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁 1 -1 -1 1 1 1 -1 1 Trivial f-PRG: 𝑌 ≡ 0 ; we will rule it out later.

  30. Fractional PRGs PRG: random variable 𝑌 ∈ −1,1 * where 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁 Fractional PRG (f-PRG): random variable 𝑌 ∈ [−1,1] * where 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁 1 -1 -1 1 1 1 -1 1 Trivial f-PRG: 𝑌 ≡ 0 ; we will rule it out later. Question. Are f-PRGs easier to construct than PRGs? Can f-PRGs be used to construct PRGs?

  31. Fractional PRGs How to convert 𝑌 ∈ −1,1 * to 𝑌 L ∈ −1,1 * ?

  32. Fractional PRGs How to convert 𝑌 ∈ −1,1 * to 𝑌 L ∈ −1,1 * ? do a random walk that converges to −1,1 * Main idea:

  33. Fractional PRGs How to convert 𝑌 ∈ −1,1 * to 𝑌 L ∈ −1,1 * ? do a random walk that converges to −1,1 * Main idea: the steps of the random walk are from 𝑌

  34. Fractional PRGs How to convert 𝑌 ∈ −1,1 * to 𝑌 L ∈ −1,1 * ? do a random walk that converges to −1,1 * Main idea: the steps of the random walk are from 𝑌 Recall: f-PRG is 𝑌 = (𝑌 M , ⋯, 𝑌 * ) ∈ [−1,1] * where 𝔽 𝑔 𝑌 − 𝑔(0) ≤ 𝜁 Trivial solution: 𝑌 ≡ 0 Need to enforce non-triviality: require 𝔽 𝑌 : 7 ≥ 𝑞 for all 𝑗 = 1, … , 𝑜

  35. Constructing PRGs from f-PRGs Ma Main theorem: Suppose: ℱ : class of 𝑜 -variate Boolean functions, closed under restrictions

  36. Constructing PRGs from f-PRGs Ma Main theorem: Suppose: ℱ : class of 𝑜 -variate Boolean functions, closed under restrictions 𝑌 ∈ −1,1 * : 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁 ∀𝑔 ∈ ℱ

  37. Constructing PRGs from f-PRGs Ma Main theorem: Suppose: ℱ : class of 𝑜 -variate Boolean functions, closed under restrictions 𝑌 ∈ −1,1 * : 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁 ∀𝑔 ∈ ℱ 𝔽 𝑌 : 7 ≥ 𝑞 for all 𝑗 = 1, … ,𝑜

  38. Constructing PRGs from f-PRGs Ma Main theorem: Suppose: ℱ : class of 𝑜 -variate Boolean functions, closed under restrictions 𝑌 ∈ −1,1 * : 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁 ∀𝑔 ∈ ℱ 𝔽 𝑌 : 7 ≥ 𝑞 for all 𝑗 = 1, … ,𝑜 Then there is 𝑌′ = 𝐻 𝑌 M ,… , 𝑌 T such that 𝑌 M ,… , 𝑌 T are independent copies of 𝑌 ,

  39. Constructing PRGs from f-PRGs Ma Main theorem: Suppose: ℱ : class of 𝑜 -variate Boolean functions, closed under restrictions 𝑌 ∈ −1,1 * : 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁 ∀𝑔 ∈ ℱ 𝔽 𝑌 : 7 ≥ 𝑞 for all 𝑗 = 1, … ,𝑜 Then there is 𝑌′ = 𝐻 𝑌 M ,… , 𝑌 T such that 𝑌 M ,… , 𝑌 T are independent copies of 𝑌 , 𝑌′ ∈ −1,1 * : 𝔽𝑔 𝑌′ − 𝑔(0) ≤ 𝜁𝑢 ∀𝑔 ∈ ℱ

  40. Constructing PRGs from f-PRGs Ma Main theorem: Suppose: ℱ : class of 𝑜 -variate Boolean functions, closed under restrictions 𝑌 ∈ −1,1 * : 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁 ∀𝑔 ∈ ℱ 𝔽 𝑌 : 7 ≥ 𝑞 for all 𝑗 = 1, … ,𝑜 Then there is 𝑌′ = 𝐻 𝑌 M ,… , 𝑌 T such that 𝑌 M ,… , 𝑌 T are independent copies of 𝑌 , 𝑌′ ∈ −1,1 * : 𝔽𝑔 𝑌′ − 𝑔(0) ≤ 𝜁𝑢 ∀𝑔 ∈ ℱ M * 𝑢 = 𝑃 V log W

  41. Constructing PRGs from f-PRGs Ma Main theorem: Suppose: ℱ : class of 𝑜 -variate Boolean functions, closed under restrictions 𝑌 ∈ −1,1 * : 𝔽𝑔 𝑌 − 𝑔(0) ≤ 𝜁 ∀𝑔 ∈ ℱ 𝔽 𝑌 : 7 ≥ 𝑞 for all 𝑗 = 1, … ,𝑜 Then there is 𝑌′ = 𝐻 𝑌 M ,… , 𝑌 T such that 𝑌 M ,… , 𝑌 T are independent copies of 𝑌 , 𝑌′ ∈ −1,1 * : 𝔽𝑔 𝑌′ − 𝑔(0) ≤ 𝜁𝑢 ∀𝑔 ∈ ℱ M * 𝑢 = 𝑃 V log W • If 𝑌 has seed length 𝑡 then 𝑌′ has seed length 𝑢𝑡

Recommend


More recommend