propositional dynamic logic with belnapian truth values
play

Propositional Dynamic Logic With Belnapian Truth Values Igor Sedlr - PowerPoint PPT Presentation

Propositional Dynamic Logic With Belnapian Truth Values Igor Sedlr Institute of Computer Science, Czech Academy of Sciences, Prague AiML 2016, Budapest, 31 August 2016 Overview BPDL , a four-valued paraconsistent version of propositional dy-


  1. Propositional Dynamic Logic With Belnapian Truth Values Igor Sedlár Institute of Computer Science, Czech Academy of Sciences, Prague AiML 2016, Budapest, 31 August 2016

  2. Overview BPDL , a four-valued paraconsistent version of propositional dy- namic logic PDL 1. Motivation 2. Belnapian truth values 3. BPDL and what it can do 4. Properties of BPDL 1 / 12

  3. Motivation

  4. Motivation • PDL (Fischer and Ladner, 1979) is a (deductive) verification formalism used to prove correctness of programs, relations among programs etc. • PDL models program states as complete and consistent possible worlds • Programs understood more generally (e. g. database queries and transformations; algorithmic transformations of bodies of information) go beyond this; they require incomplete and inconsistent states • Belnap (1977a, 1977b) and Dunn (1976) introduce such states • We outline BPDL , a version of PDL built on an extension of the Belnap–Dunn logic studied by Odintsov and Wansing (2010) 2 / 12

  5. Belnapian states

  6. Classical and Belnapian states t t n b f f 2 4 3 / 12

  7. Classical and Belnapian states ⊥ L = f  if e = t f t t   ∼ L e = t if e = f  e otherwise  n b e ∧ L e ′ = inf { e , e ′ } e ∨ L e ′ = sup { e , e ′ } f f { e ′ if e ∈ D ( L ) e → L e ′ = 2 4 t otherwise ¬ L e = e → L ⊥ L 3 / 12

  8. BK (Odintsov and Wansing, 2010) Kripke L-models and BK • M = ⟨ S , R , v L ⟩ ; v L : ( FRM × W ) → L (respects ◦ L for ◦ ∈ {⊥ , ∼ , ∧ , ∨ , →} ) • v L ( ✷ φ, w ) = inf { v L ( φ, w ′ ) | Rww ′ } • v L ( ✸ φ, w ) = sup { v L ( φ, w ′ ) | Rww ′ } = L φ iff inf { v L ( ψ, w ) | ψ ∈ Γ } ∈ D ( L ) only if • Γ | v L ( φ, w ) ∈ D ( L ) for all ( M , w ) . • K if L = 2 ; BK if L = 4 4 / 12

  9. BK (Odintsov and Wansing, 2010) Kripke L-models and BK • M = ⟨ S , R , v L ⟩ ; v L : ( FRM × W ) → L (respects ◦ L for ◦ ∈ {⊥ , ∼ , ∧ , ∨ , →} ) • v L ( ✷ φ, w ) = inf { v L ( φ, w ′ ) | Rww ′ } • v L ( ✸ φ, w ) = sup { v L ( φ, w ′ ) | Rww ′ } = L φ iff inf { v L ( ψ, w ) | ψ ∈ Γ } ∈ D ( L ) only if • Γ | v L ( φ, w ) ∈ D ( L ) for all ( M , w ) . • K if L = 2 ; BK if L = 4 Example 1 p = b ✷ p = f p = n 4 / 12

  10. BK (Odintsov and Wansing, 2010) Theorem 2 The sound and complete axiomatization of BK is 1. CL in { AF , ⊥ , → , ∧ , ∨} ; 2. Strong negation axioms: ∼∼ φ ↔ φ, ∼ ( φ ∧ ψ ) ↔ ( ∼ φ ∨ ∼ ψ ) , ∼ ( φ ∨ ψ ) ↔ ( ∼ φ ∧ ∼ ψ ) , ∼ ( φ → ψ ) ↔ ( φ ∧ ∼ ψ ) , ⊤ ↔ ∼⊥ ; 3. The K axiom ✷ ( φ → ψ ) → ( ✷ φ → ✷ ψ ) and the Necessitation rule φ/ ✷ φ ; 4. Modal interaction principles: ¬ ✷ φ ↔ ✸ ¬ φ, ¬ ✸ φ ↔ ✷ ¬ φ, ∼ ✷ φ ↔ ✸ ∼ φ, ✷ φ ↔ ∼ ✸ ∼ φ, ∼ ✸ φ ↔ ✷ ∼ φ, ✸ φ ↔ ∼ ✷ ∼ φ. 5 / 12

  11. Belnapian PDL

  12. BPDL Language α ::= a ∈ ACT 0 | α ; α | α ∪ α | α ∗ | φ ? ( ACT ) ( FRM ) φ ::= p ∈ FRM 0 | ⊥ | ∼ φ | φ ∧ φ | φ ∨ φ | φ → φ | [ α ] φ | ⟨ α ⟩ φ Semantics M = ⟨ S , R , v 4 ⟩ where R : ACT �→ P ( S 2 ) and v 4 is as in BK -models (for all α ∈ ACT ) . Moreover: 1. R ( α ; β ) = R ( α ) ◦ R ( β ) 2. R ( α ∪ β ) = R ( α ) ∪ R ( β ) 3. R ( α ∗ ) = R ( α ) ∗ 4. R ( φ ?) = {⟨ x , x ⟩ | v 4 ( φ, x ) ∈ D ( 4 ) } 6 / 12

  13. Examples I ‘Not false’ ¬∼ p means that p is not false. As a result, the four Belnapian truth values are expressible as • p ∧ ¬∼ p (t, ‘true and not false’) • p ∧ ∼ p (b, ‘true and false’) • ¬ p ∧ ∼ p (f, ‘false and not true’) • ¬ p ∧ ¬∼ p (n, ‘neither true nor false’) Default rules Every default rule d of the form p : q can be represented by an r atomic program a d satisfying ( p ∧ ¬∼ q ) → [ a d ] r 7 / 12

  14. Examples II Inconsistency handling strategies • If-then-else ‘If there is inconsistent information about p , then do a p (else b p )’, ‘if there is inconsistent information about q , then do a q (else b q )’: ( p ∧ ∼ p )?; a p ∪ ¬ ( p ∧ ∼ p )?; b p and ( q ∧ ∼ q )?; a q ∪ ¬ ( q ∧ ∼ q )?; b q • While ‘While there is inconsistent information about p , do a p ’: (( p ∧ ∼ p )?; a p ) ∗ ; ¬ ( p ∧ ∼ p )? Adding and removing information Actions of adding or removing p to/from a database can be represented by atomic programs satisfying [ a + p ] p and [ a − p ] ¬ p . 8 / 12

  15. Properties of BPDL

  16. BPDL and PDL Theorem 3 The PDL axioms [ α ∪ β ] φ ↔ ([ α ] φ ∧ [ β ] φ ) [ α ; β ] φ ↔ [ α ][ β ] φ [ ψ ?] φ ↔ ( ψ → φ ) [ α ∗ ] φ ↔ ( φ ∧ [ α ][ α ∗ ] φ ) [ α ∗ ] φ ← ( φ ∧ [ α ∗ ]( φ → [ α ] φ )) are valid in BPDL (and so are their ‘diamond versions’). Theorem 4 BPDL is not compact. 9 / 12

  17. Deduction theorem and decidability Theorem 5 For finite Γ with all atomic programs in { a 1 , . . . , a n } : = ∧ Γ → φ 1. Γ | = φ iff | = [( a 1 ∪ . . . ∪ a n ) ∗ ] ∧ Γ → φ = g φ iff | 2. Γ | 10 / 12

  18. Deduction theorem and decidability Theorem 5 For finite Γ with all atomic programs in { a 1 , . . . , a n } : = ∧ Γ → φ 1. Γ | = φ iff | = [( a 1 ∪ . . . ∪ a n ) ∗ ] ∧ Γ → φ = g φ iff | 2. Γ | Theorem 6 = g φ for infinite Γ is (highly) | = φ is decidable (but Γ | undecidable). Proof. Standard filtration argument. The equivalence classes in the filtration are defined to coincide on all φ, ∼ φ where φ ∈ FL ( ψ ) . 10 / 12

  19. Completeness Theorem 7 A sound and weakly complete axiomatisation of BPDL extends the (ACT-dimensional) axiomatisation of BK by the standard PDL axioms and their diamond versions. Proof. Filtration of the canonical structure. 11 / 12

  20. Summary and future work

  21. In conclusion Summary • PDL with non-standard states is relevant to formal verification of ‘information-modifying’ programs (such as, e.g., database transformations) • BPDL is a well-behaved decidable formalism that can be used Future work • Complexity of BPDL • Other non-classical versions of PDL , for example: substructural PDL , fuzzy PDL • Extensions to other program logics such as Dynamic Logic DL and Process Logic PL 12 / 12

  22. Thank you!

  23. References Belnap, N. (1977a). How a computer should think. In G. Ryle (Ed.), Contem- porary Aspects of Philosophy. Oriel Press Ltd. Belnap, N. (1977b). A useful four-valued logic. In J. M. Dunn and G. Epstein (Eds.), Modern Uses of Multiple-Valued Logic (pp. 5–37). Dordrecht: Springer Netherlands. Dunn, J. M. (1976). Intuitive semantics for first-degree entailments and “cou- pled trees”. Philosophical Studies , 29 , 149–168. Fischer, M. J., and Ladner, R. E. (1979). Propositional dynamic logic of regular programs. Journal of Computer and System Sciences , 18 , 194–211. Odintsov, S., and Wansing, H. (2010). Modal logics with Belnapian truth values. Journal of Applied Non-Classical Logics , 20 (3), 279–301.

Recommend


More recommend