probabilistic open games
play

Probabilistic Open Games Neil Ghani, Clemens Kupke, Alasdair - PowerPoint PPT Presentation

Probabilistic Open Games Neil Ghani, Clemens Kupke, Alasdair Lambert, Fredrik Nordvall Forsberg University Of Strathclyde SYCO3, Oxford, 28 March 2019 Game Theory What is Game Theory? The mathematical study of strategic interaction between


  1. Probabilistic Open Games Neil Ghani, Clemens Kupke, Alasdair Lambert, Fredrik Nordvall Forsberg University Of Strathclyde SYCO3, Oxford, 28 March 2019

  2. Game Theory

  3. What is Game Theory? ◮ The mathematical study of strategic interaction between rational agents 2 / 25

  4. What is Game Theory? ◮ The mathematical study of strategic interaction between rational agents ◮ Agents pick a strategy to play 2 / 25

  5. What is Game Theory? ◮ The mathematical study of strategic interaction between rational agents ◮ Agents pick a strategy to play ◮ The outcome is determined by collective action of all agents 2 / 25

  6. What is Game Theory? ◮ The mathematical study of strategic interaction between rational agents ◮ Agents pick a strategy to play ◮ The outcome is determined by collective action of all agents ◮ The outcome determines the utility each agent receives 2 / 25

  7. What is Game Theory? ◮ The mathematical study of strategic interaction between rational agents ◮ Agents pick a strategy to play ◮ The outcome is determined by collective action of all agents ◮ The outcome determines the utility each agent receives ◮ Analyse these games via equilibrium 2 / 25

  8. What is an equilibrium? ( σ 0 , σ 1 ) Nash Equilibrium if ◮ σ 0 ∈ arg max { u 0 ( σ ′ , σ 1 ) } ; and σ ′ ∈ Σ 0 ◮ σ 1 ∈ arg max { u 1 ( σ 0 , σ ′′ ) } σ ′′ ∈ Σ 1 3 / 25

  9. Prisoner’s dilemma Player 2 C D 3 , 3 0 , 4 C Player 1 4 , 0 1 , 1 D 4 / 25

  10. Prisoner’s dilemma Player 2 C D 3 , 3 0 , 4 C Player 1 4 , 0 1 , 1 D Only equilibrium: ( D , D ) . 4 / 25

  11. Matching Pennies Bob H T H − 1 , 1 1 , − 1 Alice T 1 , − 1 − 1 , 1 5 / 25

  12. Matching Pennies Bob H T H − 1 , 1 1 , − 1 Alice T 1 , − 1 − 1 , 1 No equilibrium. 5 / 25

  13. Matching Pennies Bob H T H − 1 , 1 1 , − 1 Alice T 1 , − 1 − 1 , 1 No pure equilibrium. 5 / 25

  14. Matching Pennies Bob H T H − 1 , 1 1 , − 1 Alice T 1 , − 1 − 1 , 1 No pure equilibrium. Only mixed equilibrium: both play 1 2 H + 1 2 T . 5 / 25

  15. Problems with Game Theory ◮ Complexity issues ◮ Finding equilibria is computationally hard ◮ Games do not compose 6 / 25

  16. Pure Open Games

  17. Pure Open Games [Hedges 2016] Neil Ghani, Jules Hedges, Viktor Winschel, Philipp Zahn Compositional game theory. LICS 2018. ◮ A framework for building games compositionally ◮ Applying Category Theory to Game Theory 7 / 25

  18. Pure open games: definition S X Σ R Y Let X , Y , R and S be sets. A pure open game G : ( X , S ) → ( Y , R ) consists of: 8 / 25

  19. Pure open games: definition S X Σ R Y Let X , Y , R and S be sets. A pure open game G : ( X , S ) → ( Y , R ) consists of: ◮ a set Σ of strategy profiles for G 8 / 25

  20. Pure open games: definition S X Σ R Y Let X , Y , R and S be sets. A pure open game G : ( X , S ) → ( Y , R ) consists of: ◮ a set Σ of strategy profiles for G ◮ a play function P : Σ × X → Y 8 / 25

  21. Pure open games: definition S X Σ R Y Let X , Y , R and S be sets. A pure open game G : ( X , S ) → ( Y , R ) consists of: ◮ a set Σ of strategy profiles for G ◮ a play function P : Σ × X → Y ◮ a coutility function C : Σ × X × R → S 8 / 25

  22. Pure open games: definition S X Σ R Y Let X , Y , R and S be sets. A pure open game G : ( X , S ) → ( Y , R ) consists of: ◮ a set Σ of strategy profiles for G ◮ a play function P : Σ × X → Y ◮ a coutility function C : Σ × X × R → S ◮ an equilibrium function E : X × ( Y → R ) → P (Σ) . 8 / 25

  23. Pure open games: parallel composition S X S’ X’ ⊗ Σ Σ ′ R Y R’ Y’ 9 / 25

  24. Pure open games: parallel composition S × S’ X × X’ Σ × Σ ′ R × R’ Y × Y’ 9 / 25

  25. Pure open games: sequential composition S X Σ R Y ◦ R Y Σ ′ T Z 10 / 25

  26. Pure open games: sequential composition S X Σ × Σ ′ T Z 10 / 25

  27. Incorporating mixed strategies ◮ Want to also capture mixed strategies. ◮ Solution: use the distributions monad for categorical probability theory [Perrone 2018]. 11 / 25

  28. Commutative Monads

  29. Monads and strength ◮ A strong monad on a monoidal category C is a monad ( T , η, µ ) with a left strength s l : A ⊗ TB → T ( A ⊗ B ) . 12 / 25

  30. Monads and strength ◮ A strong monad on a monoidal category C is a monad ( T , η, µ ) with a left strength s l : A ⊗ TB → T ( A ⊗ B ) . ◮ If C is symmetric monoidal, we can define a right strength s r : TA ⊗ B → T ( A ⊗ B ) by T γ � T ( A ⊗ B ) γ s l � B ⊗ TA � T ( B ⊗ A ) TA ⊗ B 12 / 25

  31. � � � Commutative monads A strong monad on a symmetric monoidal category is commutative if s l Ts r � TT ( A ⊗ B ) TA ⊗ TB T ( TA ⊗ B ) s r µ Ts l � TT ( A ⊗ B ) µ � T ( A ⊗ B ) T ( A ⊗ TB ) We call this map ℓ : TA ⊗ TB → T ( A ⊗ B ) . 13 / 25

  32. The finite distribution monad D : Set → Set Probability distribution on X : ◮ function ω : X → [ 0 , 1 ] ◮ � ω ( x ) = 1 x ◮ finite support. 14 / 25

  33. The finite distribution monad D : Set → Set Probability distribution on X : ◮ function ω : X → [ 0 , 1 ] ◮ � ω ( x ) = 1 x ◮ finite support. D ( X ) collection of distributions on X . ◮ η : X → D X point distribution. ◮ µ : D 2 X → D X flattens distributions of distributions. ◮ ℓ : D X × D Y → D ( X × Y ) independent joint distribution. ◮ D -algebras: convex sets R , with “expectation” E : D R → R . 14 / 25

  34. Probabilistic Open Games

  35. Probabilistic Open Games Let X and Y be sets, and R and S D -algebras. A probabilistic open game G : ( X , S ) → ( Y , R ) consists of 15 / 25

  36. Probabilistic Open Games Let X and Y be sets, and R and S D -algebras. A probabilistic open game G : ( X , S ) → ( Y , R ) consists of ◮ a set Σ of strategies 15 / 25

  37. Probabilistic Open Games Let X and Y be sets, and R and S D -algebras. A probabilistic open game G : ( X , S ) → ( Y , R ) consists of ◮ a set Σ of strategies ◮ a play function P : Σ × X → Y 15 / 25

  38. Probabilistic Open Games Let X and Y be sets, and R and S D -algebras. A probabilistic open game G : ( X , S ) → ( Y , R ) consists of ◮ a set Σ of strategies ◮ a play function P : Σ × X → Y ◮ a coutility function C : Σ × X × R → S 15 / 25

  39. Probabilistic Open Games Let X and Y be sets, and R and S D -algebras. A probabilistic open game G : ( X , S ) → ( Y , R ) consists of ◮ a set Σ of strategies ◮ a play function P : Σ × X → Y ◮ a coutility function C : Σ × X × R → S ◮ an equilibrium function E : X × ( Y → R ) → P ( D Σ) 15 / 25

  40. Parallel composition Play, coplay same as in pure case. For games G : ( X , S ) → ( Y , R ) and H : ( X ′ , S ′ ) → ( Y ′ , R ′ ) we need to define the equilibrium E G ⊗ H : X × X ′ × ( Y × Y ′ → R × R ′ ) → P ( D (Σ × Σ ′ )) 16 / 25

  41. Parallel composition Play, coplay same as in pure case. For games G : ( X , S ) → ( Y , R ) and H : ( X ′ , S ′ ) → ( Y ′ , R ′ ) we need to define the equilibrium E G ⊗ H : X × X ′ × ( Y × Y ′ → R × R ′ ) → P ( D (Σ × Σ ′ )) Φ ∈ E G ⊗ H ( x 1 , x 2 ) k iff 16 / 25

  42. Parallel composition Play, coplay same as in pure case. For games G : ( X , S ) → ( Y , R ) and H : ( X ′ , S ′ ) → ( Y ′ , R ′ ) we need to define the equilibrium E G ⊗ H : X × X ′ × ( Y × Y ′ → R × R ′ ) → P ( D (Σ × Σ ′ )) Φ ∈ E G ⊗ H ( x 1 , x 2 ) k iff Φ = ℓ ( φ 1 , φ 2 ) and 16 / 25

  43. Parallel composition Play, coplay same as in pure case. For games G : ( X , S ) → ( Y , R ) and H : ( X ′ , S ′ ) → ( Y ′ , R ′ ) we need to define the equilibrium E G ⊗ H : X × X ′ × ( Y × Y ′ → R × R ′ ) → P ( D (Σ × Σ ′ )) Φ ∈ E G ⊗ H ( x 1 , x 2 ) k iff Φ = ℓ ( φ 1 , φ 2 ) and φ 1 ∈ E G 16 / 25

  44. Parallel composition Play, coplay same as in pure case. For games G : ( X , S ) → ( Y , R ) and H : ( X ′ , S ′ ) → ( Y ′ , R ′ ) we need to define the equilibrium E G ⊗ H : X × X ′ × ( Y × Y ′ → R × R ′ ) → P ( D (Σ × Σ ′ )) Φ ∈ E G ⊗ H ( x 1 , x 2 ) k iff Φ = ℓ ( φ 1 , φ 2 ) and φ 1 ∈ E G x 1 16 / 25

  45. Parallel composition Play, coplay same as in pure case. For games G : ( X , S ) → ( Y , R ) and H : ( X ′ , S ′ ) → ( Y ′ , R ′ ) we need to define the equilibrium E G ⊗ H : X × X ′ × ( Y × Y ′ → R × R ′ ) → P ( D (Σ × Σ ′ )) Φ ∈ E G ⊗ H ( x 1 , x 2 ) k iff Φ = ℓ ( φ 1 , φ 2 ) and φ 1 ∈ E G x 1 E [ D ( π 0 ) ◦ D ( k ) ◦ ℓ ( η _ , D ( P H ( _ , x 2 )) φ 2 )] and 16 / 25

  46. Parallel composition Play, coplay same as in pure case. For games G : ( X , S ) → ( Y , R ) and H : ( X ′ , S ′ ) → ( Y ′ , R ′ ) we need to define the equilibrium E G ⊗ H : X × X ′ × ( Y × Y ′ → R × R ′ ) → P ( D (Σ × Σ ′ )) Φ ∈ E G ⊗ H ( x 1 , x 2 ) k iff Φ = ℓ ( φ 1 , φ 2 ) and φ 1 ∈ E G x 1 E [ D ( π 0 ) ◦ D ( k ) ◦ ℓ ( η _ , D ( P H ( _ , x 2 )) φ 2 )] and φ 2 ∈ E H x 2 E [ D ( π 1 ) ◦ D ( k ) ◦ ℓ ( D ( P G ( _ , x 1 )) φ 1 , η _ )] 16 / 25

Recommend


More recommend