probabilistic analysis of christofides algorithm
play

Probabilistic Analysis of Christofides Algorithm Markus Bl aser - PowerPoint PPT Presentation

Probabilistic Analysis of Christofides Algorithm Markus Bl aser Konstantinos Panagiotou B. V. Raghavendra Rao July 5, 2012 Markus Bl aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides


  1. Probabilistic Analysis of Christofides’ Algorithm Markus Bl¨ aser Konstantinos Panagiotou B. V. Raghavendra Rao July 5, 2012 Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  2. Stochastic Euclidean TSP Problem Given n points a 1 , . . . a n from [0 , 1] d , compute the shortest travelling salesman’s tour T ( a 1 , . . . , a n ) . Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  3. Stochastic Euclidean TSP Problem Given n points a 1 , . . . a n from [0 , 1] d , compute the shortest travelling salesman’s tour T ( a 1 , . . . , a n ) . NP hard to compute exactly. PTAS algorithms are known. [Arora ’96, Mitchell ’99] Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  4. Probabilistic Analysis of Stochastic ETSP Problem Given X 1 , . . . , X n uniform, i.i.d points from [0 , 1] d , provide a.s. theory for T ( X 1 , . . . , X n ) . Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  5. Probabilistic Analysis of Stochastic ETSP Problem Given X 1 , . . . , X n uniform, i.i.d points from [0 , 1] d , provide a.s. theory for T ( X 1 , . . . , X n ) . Theorem (Beardwood-Halton-Hammersly ’59) There exists a positive constant α ( d ) such that, T ( X 1 , . . . , X n ) lim = α ( d ) with probability one . n ( d − 1) / d n →∞ Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  6. Probabilistic Analysis of Stochastic ETSP Lead to the well-known partitioning heuristic for Euclidean TSP. [Karp, 1976] Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  7. Probabilistic Analysis of Stochastic ETSP Lead to the well-known partitioning heuristic for Euclidean TSP. [Karp, 1976] Question [Frieze-Yukich 2000] Develop a.s theory for the Christofides’ algorithm. Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  8. Christofides’ algorithm for Stochastic ETSP Compute a minimum spanning tree τ of the given set of points a 1 . . . , a n ∈ [0 , 1] d . Let M be minimum matching of the odd-degree vertices in τ and G = τ ∪ M . Output the tour obtained by short-cutting the Eulerian graph. G . Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  9. Christofides’ algorithm for Stochastic ETSP Christofides’ algorithm has a worst-case approximation ratio of 1.5. The ratio is tight for Euclidean Metric. Experiments suggest better performance in practice. Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  10. Probabilistic Analysis? Cost of the tour 1 . 5 α n ( d − 1) / d CHR α n ( d − 1) / d n Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  11. Christofides’ functional Definition For F ⊂ [0 , 1] d with | F | = n , CHR( F ) ∆ = MST( F ) + ODD-MATCHING( F ) . Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  12. Main Theorem Theorem There exists a positive constant β ( d ) such that, E [CHR( X 1 , . . . , X n )] lim = β ( d ) n ( d − 1) / d n →∞ where X 1 , . . . , X n are independent unform distributions from [0 , 1] d . Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  13. Main Theorem Theorem There exists a positive constant β ( d ) such that, E [CHR( X 1 , . . . , X n )] lim = β ( d ) n ( d − 1) / d n →∞ where X 1 , . . . , X n are independent unform distributions from [0 , 1] d . Corollary There is positive constant β ( d ) such that, [CHR( X 1 , . . . , X n )] lim = β ( d ) with probability one . n ( d − 1) / d n →∞ Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  14. Geometric Subadditivity Definition (Geometric Subbadditivity) Let Q 1 , . . . , Q m d be a partition of [0 , 1] d into equi-sized sub-cubes of side m − 1 . A functional f is geometric subbadditive if for all F ⊂ [0 , 1] d and m > 0, m d f ( F , [0 , 1] d ) ≤ � f ( F ∩ Q i , Q i ) + Cm d − 1 i =1 where C is a constant depending on d . Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  15. Geometric Subadditivity The functionals corresponding to Euclidean TSP, Euclidean MST and Euclidean minimum matching are geomtric subadditive. Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  16. Limit theorems for Subadditive functionals Theorem (Steele ’81) If f is a monotone and subadditive Euclidean functional over [0 , 1] d , then there is a constant α f ( d ) such that, f ( X 1 , . . . , X n ) lim = α f ( d ) with probability one n ( d − 1) / d n →∞ where X 1 , . . . , X n are independent uniform distributions over [0 , 1] d . Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  17. Limit theorems for Subadditive functionals CHR is not monotone. Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  18. Limit theorems for Subadditive functionals CHR is not monotone. Assumption of montonicity can be removed from Steele’s theorem. [Yukich ’96] Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  19. Is CHR subadditive? � � �� �� �� �� � � �� �� �� �� �� �� �� �� �� �� �� �� � � �� �� � � �� �� �� �� � � �� �� � � � � �� �� � � �� �� �� �� �� �� �� �� �� �� �� �� � � � � � � � � � � � � � �� �� �� �� �� �� �� �� �� �� �� �� �� �� � �� �� � � �� �� � � �� �� � � � � � � � � � � � � � �� �� �� �� �� �� �� �� �� �� �� �� � � � � � �� �� �� �� �� �� � �� �� �� �� Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  20. Is CHR subadditive? � � �� �� �� �� � � �� �� �� �� �� �� �� �� �� �� �� �� � � �� �� �� �� � � �� �� � � �� �� � � � � �� �� � � �� �� �� �� �� �� �� �� �� �� �� �� � � � � � � � � � � � � � �� �� �� �� �� �� �� �� �� �� �� �� �� �� � �� �� � � �� �� � � �� �� � � � � � � � � � � � � � �� �� �� �� �� �� �� �� �� �� �� �� � � � � � �� �� �� �� �� �� � �� �� �� �� Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

  21. Is CHR subadditive? � � �� �� �� �� � � �� �� �� �� �� �� �� �� �� �� �� �� � � �� �� �� �� � � �� �� � � �� �� � � � � �� �� � � �� �� �� �� �� �� �� �� �� �� �� �� � � � � � � � � � � � � � �� �� �� �� �� �� �� �� �� �� �� �� �� �� � �� �� � � �� �� � � �� �� � � � � � � � � � � � � � �� �� �� �� �� �� �� �� �� �� �� �� � � � � � �� �� �� �� �� �� � �� �� �� �� Markus Bl¨ aser, Konstantinos Panagiotou, B. V. Raghavendra Rao Probabilistic Analysis of Christofides’ Algorithm

Recommend


More recommend