prediction of fracturing and dynamic roof failure in
play

Prediction of Fracturing and Dynamic Roof Failure in Platinum Mines - PowerPoint PPT Presentation

Prediction of Fracturing and Dynamic Roof Failure in Platinum Mines Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Thebe Ramanna, Charlene Chipoyera Moderators: Prof.


  1. Prediction of Fracturing and Dynamic Roof Failure in Platinum Mines Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Thebe Ramanna, Charlene Chipoyera Moderators: Prof. Mason, Prof. Fowkes, Ashleigh Hutchinson January 20, 2014 Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 1 / 31

  2. Introduction Roof collapses occur occasionally in platinum mines and are devastating events When roof collapse occurs, large slabs of the rock fracture These roof collapses compromise miner safety and are very costly to the mine By understanding how a roof collapse occurs, we can predict its occurrence as well as attempt to mitigate the risks, thus avoiding unnecessary loss Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 2 / 31

  3. Introduction Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 3 / 31

  4. Introduction Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 4 / 31

  5. Crack Formation Given slabbing, what factors contribute to/determine the uniform thickness of the slabs in non-sedimentary rock? Definitions Slabbing: A phenomenon whereby a rock mass peels off in uniform layers Thickness: Distance from free surface to the fracture Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 5 / 31

  6. Crack Formation Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 6 / 31

  7. Crack Formation Considerations Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 7 / 31

  8. Crack Formation Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 8 / 31

  9. Crack Formation Possible Slabbing Explanations P ∝ H , so the pressure closer to the lower free surface is the greatest. This is why we have roof collapse. The geometric distribution of pre-existing cracks may influence the manner in which the rock fractures. Seismicity induced by drilling, explosions and natural effects causes a re-distribution of stresses which contributes to crack extension. Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 9 / 31

  10. Exfoliation Problem Exfoliation of surface rocks is a complementary phenomenon that has been observed. We believe it to be a buckling beam problem and that it also corresponds to the eigenvalue problem, as the effect of gravity was seen to be negligible. Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 10 / 31

  11. Exfoliation Problem Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 11 / 31

  12. Exfoliation Problem Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 12 / 31

  13. Exfoliation Problem The beam equation is given by EI d 4 w dx 4 + P d 2 w dx 2 = q , where q is the sum of the body force and the surface traction per unit length. For the exfoliation problem, q =0 thus resulting in d 4 w dx 4 + B 2 d 2 w dx 2 = 0 . Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 13 / 31

  14. Exfoliation Problem Finding the general solution to our equation yields w ( x ) = A cos( Bx ) + C sin( Bx ) + D B 2 x + F B 2 , subject to the boundary conditions for a beam clamped at both ends: w (0) = 0 , w (1) = 0 , w ′ (0) = 0 , w ′ (1) = 0 . Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 14 / 31

  15. Exfoliation Problem In order to produce non-trivial solutions, we impose our boundary conditions to obtain a homogeneous system of equations in the form Hx = 0: B − 2       1 0 0 A 0 B − 2 B − 2 cos( B ) sin( B ) 0 C        =  B − 2      0 B 0 D 0      B − 2 − B sin( B ) B cos( B ) 0 0 F We want the determinant of the matrix to be equal to 0. � B � � � B � � B �� − B det( H ) = 4 B 5 sin sin 2 cos = 0 2 2 2 Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 15 / 31

  16. Exfoliation Problem � B � Case 1 : sin = 0 2 Solving for B gives B = 2 n π n ∈ Z . We substitute this into the matrix H : 1   1 0 0 (2 n π ) 2   1 1   1 0   (2 n π ) 2 (2 n π ) 2   .   1   0 2 n π 0   (2 n π ) 2     1   0 2 n π 0 (2 n π ) 2 Solving the resulting matrix system with B = 2 n π gives w ( x ) = A (cos(2 n π x ) − 1) , where A is an arbitrary constant. Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 16 / 31

  17. Exfoliation Problem Plot of the beam deflection w � x � n � 1 � 2 n � 2 � 1.5 n � 3 � 1 � 0.5 x 0.2 0.4 0.6 0.8 1.0 Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 17 / 31

  18. Exfoliation Problem Plot of the beam curvature Curvature B � 2 Π , n � 1 350 B � 4 Π , n � 2 300 250 B � 6 Π , n � 3 200 150 100 50 x 0.2 0.4 0.6 0.8 1.0 Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 18 / 31

  19. Exfoliation Problem � � B � � B �� � B � − B − B Case 2 : sin 2 cos = 0 ⇒ tan 2 = 0 2 2 2 20 10 B Π 2 Π 3 Π 4 Π 5 Π 6 Π 7 Π � 10 � 20 Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 19 / 31

  20. Exfoliation Problem � B � = B From tan 2 , we can derive 2 B sin B = B 2 4 + 1 B 2 4 − 1 cos B = B 2 4 + 1 Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 20 / 31

  21. Exfoliation Problem We substitute these expressions into the matrix H , and apply row operations, we obtain  1 0 0 1  1 − B 2 1 + B 2 1 + B 2   B   4 4 4 .   0 B 1 0     B (1 − B 2 1 + B 2   − B 2 4 ) 0 4 Solving the resulting matrix system gives w ( x ) = D ( − B 2 cos( Bx ) + sin( Bx ) − Bx + B 2 ) , where D is an arbitrary constant. Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 21 / 31

  22. Exfoliation Problem Plot of the beam deflection, for varying B values w � x � B � 8.9 20 B � 15.45 10 B � 21.8 B � 28.1 x 0.2 0.4 0.6 0.8 1.0 � 10 � 20 Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 22 / 31

  23. Exfoliation Problem Plot of the beam curvature, for varying B values curvature B � 8.9 10 000 B � 15.45 8000 B � 21.8 6000 B � 28.1 4000 2000 x 0.2 0.4 0.6 0.8 1.0 Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 23 / 31

  24. Slanting Beam Problem Blasted tunnels have roofs that seem to behave as beams; however, they are at an angle, say θ . We thus felt that examining how the roof in a platinum mine fractured would be equivalent to examining the slanted beam equation. Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 24 / 31

  25. Slanting Beam Problem Kedy Mazibuko, Kirsten Louw, Despina Zoras, Emile Meoto, Tanki Motsepa, Yachna Bharath, Sanelisiwe Bingo, Vuyelwa Makibelo, Theb MISG 2014 January 20, 2014 25 / 31

Recommend


More recommend