power series overview
play

Power Series (Overview) Bernd Schr oder logo1 Bernd Schr oder - PowerPoint PPT Presentation

Summary Radius of Convergence Representation of Functions Power Series (Overview) Bernd Schr oder logo1 Bernd Schr oder Louisiana Tech University, College of Engineering and Science Power Series (Overview) Summary Radius of


  1. Summary Radius of Convergence Representation of Functions Power Series (Overview) Bernd Schr¨ oder logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  2. Summary Radius of Convergence Representation of Functions Facts About Power Series logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  3. Summary Radius of Convergence Representation of Functions Facts About Power Series ∞ c n ( x − x 0 ) n is 1. If { c n } ∞ ∑ n = 0 is a sequence of numbers, then n = 0 called a power series about x 0 . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  4. Summary Radius of Convergence Representation of Functions Facts About Power Series ∞ c n ( x − x 0 ) n is 1. If { c n } ∞ ∑ n = 0 is a sequence of numbers, then n = 0 called a power series about x 0 . 2. There is a nonnegative R (the radius of convergence ), which could be infinity, so that the power series converges for every x in ( x 0 − R , x 0 + R ) and so that the power series diverges for every x not in ( x 0 − R , x 0 + R ) . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  5. Summary Radius of Convergence Representation of Functions Facts About Power Series ∞ c n ( x − x 0 ) n is 1. If { c n } ∞ ∑ n = 0 is a sequence of numbers, then n = 0 called a power series about x 0 . 2. There is a nonnegative R (the radius of convergence ), which could be infinity, so that the power series converges for every x in ( x 0 − R , x 0 + R ) and so that the power series diverges for every x not in ( x 0 − R , x 0 + R ) . 3. For R < ∞ , to decide about convergence at x 0 − R and x 0 + R , further convergence tests for series are needed. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  6. Summary Radius of Convergence Representation of Functions Facts About Power Series ∞ c n ( x − x 0 ) n is 1. If { c n } ∞ ∑ n = 0 is a sequence of numbers, then n = 0 called a power series about x 0 . 2. There is a nonnegative R (the radius of convergence ), which could be infinity, so that the power series converges for every x in ( x 0 − R , x 0 + R ) and so that the power series diverges for every x not in ( x 0 − R , x 0 + R ) . 3. For R < ∞ , to decide about convergence at x 0 − R and x 0 + R , further convergence tests for series are needed. 4. Standard way to compute the radius of convergence for many series: Apply the ratio test . The power series c n + 1 x n + 1 � � � � converges for all x for which lim � < 1 and it � � c n x n n → ∞ � diverges for all x for which the limit is greater than 1. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  7. Summary Radius of Convergence Representation of Functions Compute the Radius of Convergence of the Power ∞ ( − 2 ) n ∑ n + 1 x n Series n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  8. Summary Radius of Convergence Representation of Functions Compute the Radius of Convergence of the Power ∞ ( − 2 ) n ∑ n + 1 x n Series n = 0 ( − 2 ) n + 1 � � ( n + 1 )+ 1 x n + 1 � � � � lim � � ( − 2 ) n n → ∞ n + 1 x n � � � � logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  9. Summary Radius of Convergence Representation of Functions Compute the Radius of Convergence of the Power ∞ ( − 2 ) n ∑ n + 1 x n Series n = 0 ( − 2 ) n + 1 � � 2 n + 1 ( n + 1 )+ 1 x n + 1 � � n + 2 x n + 1 � � � � � � = lim lim � � � � ( − 2 ) n 2 n � n + 1 x n � n → ∞ n → ∞ n + 1 x n � � � � � � logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  10. Summary Radius of Convergence Representation of Functions Compute the Radius of Convergence of the Power ∞ ( − 2 ) n ∑ n + 1 x n Series n = 0 ( − 2 ) n + 1 � � 2 n + 1 ( n + 1 )+ 1 x n + 1 � � n + 2 x n + 1 2 n + 1 � � n + 1 � � � � = � = lim 2 n | x | lim lim � � � � ( − 2 ) n 2 n n + 2 � n + 1 x n � n → ∞ n → ∞ n → ∞ n + 1 x n � � � � � logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  11. Summary Radius of Convergence Representation of Functions Compute the Radius of Convergence of the Power ∞ ( − 2 ) n ∑ n + 1 x n Series n = 0 ( − 2 ) n + 1 � � 2 n + 1 ( n + 1 )+ 1 x n + 1 � � n + 2 x n + 1 2 n + 1 � � n + 1 � � � � = � = lim 2 n | x | lim lim � � � � ( − 2 ) n 2 n n + 2 � n + 1 x n � n → ∞ n → ∞ n → ∞ n + 1 x n � � � � � n → ∞ 2 n + 1 = n + 2 | x | lim logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  12. Summary Radius of Convergence Representation of Functions Compute the Radius of Convergence of the Power ∞ ( − 2 ) n ∑ n + 1 x n Series n = 0 ( − 2 ) n + 1 � � 2 n + 1 ( n + 1 )+ 1 x n + 1 � � n + 2 x n + 1 2 n + 1 � � n + 1 � � � � = � = lim 2 n | x | lim lim � � � � ( − 2 ) n 2 n n + 2 � n + 1 x n � n → ∞ n → ∞ n → ∞ n + 1 x n � � � � � n → ∞ 2 n + 1 = n + 2 | x | = 2 | x | lim logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  13. Summary Radius of Convergence Representation of Functions Compute the Radius of Convergence of the Power ∞ ( − 2 ) n ∑ n + 1 x n Series n = 0 ( − 2 ) n + 1 � � 2 n + 1 ( n + 1 )+ 1 x n + 1 � � n + 2 x n + 1 2 n + 1 � � n + 1 � � � � = � = lim 2 n | x | lim lim � � � � ( − 2 ) n 2 n n + 2 � n + 1 x n � n → ∞ n → ∞ n → ∞ n + 1 x n � � � � � n → ∞ 2 n + 1 ! = n + 2 | x | = 2 | x | lim < 1 , logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  14. Summary Radius of Convergence Representation of Functions Compute the Radius of Convergence of the Power ∞ ( − 2 ) n ∑ n + 1 x n Series n = 0 ( − 2 ) n + 1 � � 2 n + 1 ( n + 1 )+ 1 x n + 1 � � n + 2 x n + 1 2 n + 1 � � n + 1 � � � � = � = lim 2 n | x | lim lim � � � � ( − 2 ) n 2 n n + 2 � n + 1 x n � n → ∞ n → ∞ n → ∞ n + 1 x n � � � � � n → ∞ 2 n + 1 ! = n + 2 | x | = 2 | x | lim < 1 , which is the case exactly when | x | < 1 2. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  15. Summary Radius of Convergence Representation of Functions Compute the Radius of Convergence of the Power ∞ ( − 2 ) n ∑ n + 1 x n Series n = 0 ( − 2 ) n + 1 � � 2 n + 1 ( n + 1 )+ 1 x n + 1 � � n + 2 x n + 1 2 n + 1 � � n + 1 � � � � = � = lim 2 n | x | lim lim � � � � ( − 2 ) n 2 n n + 2 � n + 1 x n � n → ∞ n → ∞ n → ∞ n + 1 x n � � � � � n → ∞ 2 n + 1 ! = n + 2 | x | = 2 | x | lim < 1 , which is the case exactly when | x | < 1 2. Hence R = 1 2. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  16. Summary Radius of Convergence Representation of Functions Compute the Radius of Convergence of the Power ∞ 1 ∑ n ! x n Series n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  17. Summary Radius of Convergence Representation of Functions Compute the Radius of Convergence of the Power ∞ 1 ∑ n ! x n Series n = 0 ( n + 1 ) ! x n + 1 1 � � � � lim � � 1 n → ∞ � n ! x n � � � logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  18. Summary Radius of Convergence Representation of Functions Compute the Radius of Convergence of the Power ∞ 1 ∑ n ! x n Series n = 0 ( n + 1 ) ! x n + 1 1 � � n ! � � = ( n + 1 ) ! | x | lim lim � � 1 n → ∞ � n ! x n � n → ∞ � � logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

  19. Summary Radius of Convergence Representation of Functions Compute the Radius of Convergence of the Power ∞ 1 ∑ n ! x n Series n = 0 ( n + 1 ) ! x n + 1 1 � � n ! � � = ( n + 1 ) ! | x | lim lim � � 1 n → ∞ � n ! x n � n → ∞ � � n · ( n − 1 ) ··· 3 · 2 · 1 = ( n + 1 ) · n · ( n − 1 ) ··· 3 · 2 · 1 | x | lim n → ∞ logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Power Series (Overview)

Recommend


More recommend