power of two as sums of three pell numbers
play

Power of Two as Sums of Three Pell Numbers Joint work with J. J. - PowerPoint PPT Presentation

Power of Two as Sums of Three Pell Numbers Joint work with J. J. Bravo, F. Luca Bernadette Faye Ph.d Student Journ ees Algophantiennes Bordelaises, 07-09 July 2017 Motivation Diophantine equations obtained by asking that members of some


  1. Power of Two as Sums of Three Pell Numbers Joint work with J. J. Bravo, F. Luca Bernadette Faye Ph.d Student Journ´ ees Algophantiennes Bordelaises, 07-09 July 2017

  2. Motivation Diophantine equations obtained by asking that members of some fixed binary recurrence sequence be ◮ squares, ◮ factorials, ◮ triangular, ◮ belonging to some other interesting sequence of positive integers.

  3. Motivation Problem : Find all solutions in positive integers m , n , ℓ, a of the equation P m + P n + P ℓ = 2 a , where  P 0 = 0    P 1 = 1   P n +2 = 2 P n +1 + P n , for n ≥ 0 

  4. History ◮ Stewart(1980), ”On the representation of integers in two different basis”: the set { n : s a ( n ) < K and s b ( n ) < K } is finite.

  5. History ◮ Stewart(1980), ”On the representation of integers in two different basis”: the set { n : s a ( n ) < K and s b ( n ) < K } is finite. ◮ A. Peth˝ o(1991): P n = x q P 7 = 13 2 . , P 1 = 1 and

  6. History ◮ Stewart(1980), ”On the representation of integers in two different basis”: the set { n : s a ( n ) < K and s b ( n ) < K } is finite. ◮ A. Peth˝ o(1991): P n = x q P 7 = 13 2 . , P 1 = 1 and ◮ Bravo and Luca(2014): F n + F m = 2 a .

  7. History ◮ Stewart(1980), ”On the representation of integers in two different basis”: the set { n : s a ( n ) < K and s b ( n ) < K } is finite. ◮ A. Peth˝ o(1991): P n = x q P 7 = 13 2 . , P 1 = 1 and ◮ Bravo and Luca(2014): F n + F m = 2 a . ◮ Bravo and Bravo(2015): F n + F m + F ℓ = 2 a .

  8. History ◮ Stewart(1980), ”On the representation of integers in two different basis”: the set { n : s a ( n ) < K and s b ( n ) < K } is finite. ◮ A. Peth˝ o(1991): P n = x q P 7 = 13 2 . , P 1 = 1 and ◮ Bravo and Luca(2014): F n + F m = 2 a . ◮ Bravo and Bravo(2015): F n + F m + F ℓ = 2 a . ez and Luca(2016): F ( k ) + F ( k ) ◮ Bravo, Gom´ = 2 a n m

  9. Most Recent results... ◮ Meher and Rout(Preprint): U n 1 + · · · + U n t = b 1 p z 1 1 + · · · + b s p z s s

  10. Most Recent results... ◮ Meher and Rout(Preprint): U n 1 + · · · + U n t = b 1 p z 1 1 + · · · + b s p z s s F n + F m = 2 a + 3 b

  11. Most Recent results... ◮ Meher and Rout(Preprint): U n 1 + · · · + U n t = b 1 p z 1 1 + · · · + b s p z s s F n + F m = 2 a + 3 b ◮ Chim and Ziegler(Preprint): F n 1 + F n 2 = 2 a 1 + 2 a 2 + 2 a 3 . F m 1 + F m 2 + F m 3 = 2 t 1 + 2 t 2 .

  12. Theorem 1 (Bravo, F., Luca, 2017) The only solutions ( n , m , ℓ, a ) of the Diophantine equation P n + P m + P ℓ = 2 a (1) in integers n ≥ m ≥ ℓ ≥ 0 are in (2 , 1 , 1 , 2) , (3 , 2 , 1 , 3) , (5 , 2 , 1 , 5) , (6 , 5 , 5 , 7) , (1 , 1 , 0 , 1) , (2 , 2 , 0 , 2) , (2 , 0 , 0 , 1) , (1 , 0 , 0 , 0) .

  13. Strategy of the Proof Assume n ≥ 150 , n ≥ m ≥ ℓ P n + P m + P ℓ = 2 a ◮ The iterated application of linear forms in logarithms...

  14. Strategy of the Proof Assume n ≥ 150 , n ≥ m ≥ ℓ P n + P m + P ℓ = 2 a ◮ The iterated application of linear forms in logarithms... ◮ Baker-Devenport reduction algorithm

  15. Strategy of the Proof Assume n ≥ 150 , n ≥ m ≥ ℓ P n + P m + P ℓ = 2 a ◮ The iterated application of linear forms in logarithms... ◮ Baker-Devenport reduction algorithm ◮ Properties of the convergent of the continued fractions

  16. Proof ◮ Recall that α n − 2 < P n < α n − 1

  17. Proof ◮ Recall that P n = α n − β n α n − 2 < P n < α n − 1 and √ 2 2

  18. Proof ◮ Recall that P n = α n − β n α n − 2 < P n < α n − 1 and √ 2 2 ◮ Assume n ≥ 150 . We find a relation between a and n using

  19. Proof ◮ Recall that P n = α n − β n α n − 2 < P n < α n − 1 and √ 2 2 ◮ Assume n ≥ 150 . We find a relation between a and n using 2 a < α n − 1 + α m − 1 + α ℓ − 1

  20. Proof ◮ Recall that P n = α n − β n α n − 2 < P n < α n − 1 and √ 2 2 ◮ Assume n ≥ 150 . We find a relation between a and n using 2 a < α n − 1 + α m − 1 + α ℓ − 1 < 2 2 n − 2 (1+2 2( m − n ) +2 2( ℓ − n ) )

  21. Proof ◮ Recall that P n = α n − β n α n − 2 < P n < α n − 1 and √ 2 2 ◮ Assume n ≥ 150 . We find a relation between a and n using 2 a < α n − 1 + α m − 1 + α ℓ − 1 < 2 2 n − 2 (1+2 2( m − n ) +2 2( ℓ − n ) ) < 2 2 n +1 .

  22. Proof ◮ Recall that P n = α n − β n α n − 2 < P n < α n − 1 and √ 2 2 ◮ Assume n ≥ 150 . We find a relation between a and n using 2 a < α n − 1 + α m − 1 + α ℓ − 1 < 2 2 n − 2 (1+2 2( m − n ) +2 2( ℓ − n ) ) < 2 2 n +1 . = ⇒ a ≤ 2 n .

  23. Proof ◮ One transform P n + P m + P ℓ = 2 a

  24. Proof ◮ One transform P n + P m + P ℓ = 2 a into � α n � ≤ | β | n � − 2 a � √ √ + P m + P ℓ � � 2 2 2 2

  25. Proof ◮ One transform P n + P m + P ℓ = 2 a into � α n � ≤ | β | n + P m + P ℓ < 1 � − 2 a � α m + α ℓ � � √ √ 2 + . � � 2 2 2 2

  26. Proof ◮ One transform P n + P m + P ℓ = 2 a into � α n � ≤ | β | n + P m + P ℓ < 1 � − 2 a � α m + α ℓ � � √ √ 2 + . � � 2 2 2 2 √ ◮ Dividing both sides by α n / (2 2) ,

  27. Proof ◮ One transform P n + P m + P ℓ = 2 a into � α n � ≤ | β | n + P m + P ℓ < 1 � − 2 a � α m + α ℓ � � √ √ 2 + . � � 2 2 2 2 √ ◮ Dividing both sides by α n / (2 2) ,we get √ 8 � � � 1 − 2 a +1 · α − n · 2 � < α n − m . � �

  28. Proof ◮ One transform P n + P m + P ℓ = 2 a into � α n � ≤ | β | n + P m + P ℓ < 1 � − 2 a � α m + α ℓ � � √ √ 2 + . � � 2 2 2 2 √ ◮ Dividing both sides by α n / (2 2) ,we get √ 8 � � � 1 − 2 a +1 · α − n · 2 � < α n − m . � � ◮ Bounding n − m in terms of n

  29. Linear forms in Logarithms ` a la Baker Theorem 2 (Matveev 2000) Let K be a number field of degree D over Q , η 1 , . . . , η t be positive real numbers of K , and b 1 , . . . , b t rational integers. Put Λ = η b 1 1 · · · η b t t − 1 and B ≥ max {| b 1 | , . . . , | b t |} . Let A i ≥ max { Dh ( η i ) , | log η i | , 0 . 16 } be real numbers, for i = 1 , . . . , t .

  30. Linear forms in Logarithms ` a la Baker Theorem 2 (Matveev 2000) Let K be a number field of degree D over Q , η 1 , . . . , η t be positive real numbers of K , and b 1 , . . . , b t rational integers. Put Λ = η b 1 1 · · · η b t t − 1 and B ≥ max {| b 1 | , . . . , | b t |} . Let A i ≥ max { Dh ( η i ) , | log η i | , 0 . 16 } be real numbers, for i = 1 , . . . , t . Then, assuming that Λ � = 0 , we have | Λ | > exp( − 1 . 4 × 30 t +3 × t 4 . 5 × D 2 (1+log D )(1+log B ) A 1 · · · A t ) .

  31. First Linear Forms in Logarithms From √ 8 � � 1 − 2 a +1 · α − n · � 2 � < α n − m . � �

  32. First Linear Forms in Logarithms From √ 8 � � 1 − 2 a +1 · α − n · � 2 � < α n − m . � � we consider √ Λ = 1 − 2 a +1 · α − n · 2 .

  33. First Linear Forms in Logarithms From √ 8 � � 1 − 2 a +1 · α − n · � 2 � < α n − m . � � we consider √ Λ = 1 − 2 a +1 · α − n · 2 . Then − 1 . 4 × 30 6 × 3 4 . 5 × 2 2 × (1 + log 2)(2 log n ) × 1 . 4 × 0 . 9 × 0 . 7 � | Λ | ≥ exp ⇒ ( n − m ) log α < 1 . 8 × 10 12 log n . =

  34. Second Linear Forms in Logarithms Rewriting the equation P n + P m + P ℓ = 2 a in a different way, we get to √ 5 � 2(1 + α m − n ) − 1 � � 1 − 2 a +1 · α − n · � < α n − ℓ . � �

  35. Second Linear Forms in Logarithms Rewriting the equation P n + P m + P ℓ = 2 a in a different way, we get to √ 5 � 2(1 + α m − n ) − 1 � � 1 − 2 a +1 · α − n · � < α n − ℓ . � � Matveev’s Theorem ⇒ ( n − ℓ ) log α < 5 × 10 24 log 2 n . =

  36. Third Linear Forms in Logarithms √ � < 2 � � 1 − 2 a +1 · α − n · 2(1 + α m − n + α ℓ − n ) − 1 � α n . � �

  37. Third Linear Forms in Logarithms √ � < 2 � � 1 − 2 a +1 · α − n · 2(1 + α m − n + α ℓ − n ) − 1 � α n . � � Matveev’s Theorem

  38. Third Linear Forms in Logarithms √ � < 2 � � 1 − 2 a +1 · α − n · 2(1 + α m − n + α ℓ − n ) − 1 � α n . � � Matveev’s Theorem ⇒ n < 1 . 7 × 10 43 . =

  39. Summary of the above finding Lemma 3 If ( n , m , ℓ, a ) is a solution in positive integers of equation P n + P m + P ℓ = 2 a , with n ≥ m ≥ ℓ , then

  40. Summary of the above finding Lemma 3 If ( n , m , ℓ, a ) is a solution in positive integers of equation P n + P m + P ℓ = 2 a , with n ≥ m ≥ ℓ , then ◮ ( n − m ) log α < 1 . 8 × 10 12 log n .

  41. Summary of the above finding Lemma 3 If ( n , m , ℓ, a ) is a solution in positive integers of equation P n + P m + P ℓ = 2 a , with n ≥ m ≥ ℓ , then ◮ ( n − m ) log α < 1 . 8 × 10 12 log n . ◮ ( n − ℓ ) log α < 5 × 10 24 log 2 n .

Recommend


More recommend