positron annihilation spectroscopy in materials structure
play

Positron annihilation spectroscopy in materials structure studies - PowerPoint PPT Presentation

Positron annihilation spectroscopy in materials structure studies Participants: Kacper and Przemysaw Gajos Gontar Supervisor: Pawe Horodek , Ph. D. Outline Basics of Positron Annihilation Spectroscopy (PAS) Slow


  1. Positron annihilation spectroscopy in materials structure studies Participants: Kacper and Przemysław Gajos Gontar Supervisor: Paweł Horodek , Ph. D.

  2. Outline • Basics of Positron Annihilation Spectroscopy (PAS) • Slow positron beam • Idea of measurements • Results • Summary

  3. Basics of PAS POSITRON IS AN ANTIPARTICLE OF THE ELECTRON POSITRON SOURCES β + decay isotopes Two gamma quanta emission (511 keV) from the pair e + e - with momentum p annihilation. ANNIHILATION e + e - THE DEVIATION FROM COLINEARITY e + + e - → 2 (99.8 %, E ≈ 511 keV) INTERACTION  elastic scattering CHANGING OF GAMMA QUANTA ENERGY  nonelastic scattering as a result of the Doppler shift  bremsstrahlung INSIDE THE MATTER  implantation into medium  thermalization  diffusion  annihilation with electron

  4. Basics of PAS EXPERIMENTAL TECHNIQUES  Doppler broadening of annihilation gamma line (DBGL)  positron life times (LT) POSSIBILITIES  defect concentration  defect concentration profile  detection of the kind and size of defects APPLICATIONS  solid body physics  material and surface engineering  metals, semiconductors, thin layers The examples of structural defects. AIM OF THE EXERCISE Introduction to PAS. Measurement of S parameter profile for sample of Cu after milling

  5. Slow positron beam SLOW POSITRON BEAM IS THE FLUX OF MONOENERGETIC PARTICLES WITH ENERGYS BETWEEN A FEW eV AND A FEW DOZENS keV TWO TYPES OF MODERATORS SCHEME OF THE POSITRON EMISSION SPECTRUM OF A 22 Na SOURCE FROZEN NEON TUNGSTEN FOIL

  6. Slow positron beam (Low Energy Particle Toroidal Accumulator) moderator intensity energy range diameter of the vacuum flux conditions frozen Ne 3 [mm] (7 K)

  7. Slow positron beam

  8. Slow positron beam

  9. Slow positron beam gamma ≈ 511 keV HpGe detector preamplifier amplifier MC analyzer PC computer The energy resolution of DBGL spectrometer at LEPTA project is 1.2 keV interpolated at 511 keV.

  10. Idea of measurements S - PARAMETER 60000 defected non-defected 50000 40000 A S S = counts A 30000 A S 20000 A 10000 W- PARAMETER background A W 0 507 509 511 513 515 energy [keV] Comparison of annihilation lines for defected and nondefected samples. The rule of calculation of S- and W- A parameters. W W = A

  11. Results 0.43 0.43 0.42 0.42 0.41 0.41 S parameter S parameter 0.40 0.40 0.39 0.39 L + =76.7(2.7) 0.38 0.38 0.37 0.37 0 10 20 30 40 0.005 0.010 0.015 0.020 Energy [keV] W parameter

  12. Results AVERAGE DIFFUSION LENGTH VEPFIT program solves it to fit the model function to experimental data DEFECTS CONCENTRATION MEAN IMPLANTATION DEPTH From 1.96 Å for 50 eV up to 1.084 μm for 35 keV bulk (*)=117 [ps] - mean positron lifetime (*) 5 10 14 [s -1 ]-the trapping coefficient for vacancies in pure Cu L bulk (*)=121 [nm] - the positron diffusion length in the bulk * J.Dryzek et. al.., Tribol. Lett 11 , 29 (2001)

  13. Summary • The measurements were performed correctly, the typical S – parameter profile was obtained • The domination of one kind of defect, probably vacancies was observed • The mean diffusion length equal about 77 nm, as well as defects concentration on the level 2.3 × 10 -5 are similar to the values obtained by other authors for copper after sliding under load of 1.5 N

  14. Acknowledgement All workers from LEPTA facility, especially: Prof. Igor Meshkov, Ph.D. Paweł Horodek, Ph.D . Andrey Kobets, Ph.D. Organizers: Prof. Roman Zawodny, Ph.D. Władysław Chmielowski, Ph.D. Kinga Horodek

  15. Thank you for attention !

Recommend


More recommend