polynomial representations of the lie superalgebra osp 1
play

Polynomial Representations of the Lie superalgebra osp (1 | 2 n ) - PowerPoint PPT Presentation

Polynomial Representations of the Lie superalgebra osp (1 | 2 n ) Asmus Kjr Bisbo Department of Applied Mathematics, Computer Science and Statistics, Faculty of Science, Ghent University 18. June 2019 Joint work with Joris Van der Jeugt and


  1. Polynomial Representations of the Lie superalgebra osp (1 | 2 n ) Asmus Kjær Bisbo Department of Applied Mathematics, Computer Science and Statistics, Faculty of Science, Ghent University 18. June 2019 Joint work with Joris Van der Jeugt and Hendrik de Bie 1 / 16

  2. Representation Theory of osp (1 | 2 n ) Classify the representations. Find character formulas. Construct bases. Calculate matrix elements. Formulate inner products. What do we know about osp (1 | 2 n ) representations?: Finite dimensional representations: Classified and characters are understood. [Kac; 1977] Infinite dimensional representations: Lowest weight representations: Classified and characters are mostly understood. [Dobrev, Zhang; 2006]. Paraboson Fock representations: Character formula, basis and matrix elements(”abstract”). [Lievens, Stoilova, Van der Jeugt; 2008] 2 / 16

  3. Definition of osp (1 | 2 n ) Definition as a matrix algebra [Kac; 1977]. Definition as a superalgebra by means of generators and relations [Ganchev, Palev; 1980]: Odd generators b + i , b − i , i ∈ { 1 , . . . , n } , satisfying [ { b ξ i , b η j } , b ǫ l ] = ( ǫ − ξ ) δ i , l b η j + ( ǫ − η ) δ j , l b ξ i , for i , j , l ∈ { 1 , . . . , n } and η, ǫ, ξ ∈ { + , −} , to be interpreted as ± 1 in the algebraic relations. We can interpret b + and b − as parabosonic creation and i i annihilation operators. 3 / 16

  4. Parabosonic Fock space Definition 1 For p ∈ N , the paraboson Fock space is an osp (1 | 2 n ) irrep. with unique vacuum | 0 � satisfying i | 0 � = 0 and 1 i }| 0 � = p b + 2 { b − i , b + 2 | 0 � , ( i ∈ { 1 , . . . , n } ) . C [ R np ] polynomials in n · p variables, x i , j , C ℓ p Clifford algebra generated by e j , satisfying { e i , e j } = 2 δ ij . Then osp (1 | 2 n ) acts on C [ R np ] ⊗ C ℓ p with, p p � � b + and b − i �→ X i = x i , j e j , i �→ D i = ∂ x i , j e j . � �� � � �� � j =1 j =1 Green’s ansatz Green’s ansatz 4 / 16

  5. Polynomial Representation Let W ( µ + p 2 ) be the osp (1 | 2 n ) irrep. with a (not necessarily unique) vacuum vector | µ ; 0 � satisfying 1 i }| µ ; 0 � = ( µ + p 2 { b − i , b + 2) | µ ; 0 � , ( i ∈ { 1 , . . . , n } ) . Decomposition [Cheng, Kwong, Wang; 2010], [Salom; 2013]: 2 W ( µ + p � C [ R np ] ⊗ C ℓ p = 2) , m µ + p µ ∈P with m µ + p 2 being the multiplicities. The case µ = 0 gives a paraboson Fock space. Let | 0; 0 � �→ 1, then 1 2 { D i , X i } (1) = p 2 , ( i ∈ { 1 , . . . , n } ) , W ( p 2) = span C { X k 1 1 · · · X k n n (1) : k 1 , . . . , k n ∈ N 0 } . 5 / 16

  6. Character Formula P Set of all partitions. ( λ 1 , . . . , λ k ) , λ 1 ≥ · · · ≥ λ k , k ∈ N 0 ℓ ( λ ) Length of λ ∈ P . λ ℓ ( λ ) > 0 , λ l = 0 , l > ℓ ( λ ) s λ Schur function of the partition λ ∈ P K λµ Kostka numbers for λ ∈ P and µ ∈ N n 0 Theorem (Lievens, Stoilova, Van der Jeugt; 2008) char W ( p � 2) = ( t 1 · · · t n ) p / 2 s λ ( t 1 , . . . , t n ) λ ∈P , ℓ ( λ ) ≤ p � � K λµ t µ 1 = ( t 1 · · · t n ) p / 2 1 · · · t µ n n µ ∈ N n λ ∈P ,ℓ ( λ ) ≤ p 0 6 / 16

  7. Weight Spaces Definition char W ( p dim W ( p 2) = ( t 1 · · · t n ) p / 2 � 2 t µ 1 1 · · · t µ n 2) µ + p n . µ ∈ N n 0 So for all µ ∈ N n 0 dim W ( p � 2) µ + p 2 = K λµ λ ∈P ,ℓ ( λ ) ≤ p K λµ := # { Semistandard Young Tableaux of shape λ and weight µ } ≤ � �� � 1 1 2 4 � < , λ = (4 , 3 , 2), and µ = (2 , 2 , 1 , 2 , 2) 2 3 4 5 5 7 / 16

  8. Young Tableaux and Basis � S.s. Young Tableaux of at most p rows, � Y ( p ) = and weight in N n 0 There exists a basis for W ( p 2 ): Consisting of vectors ν A , for A ∈ Y ( p ). Tableaux A ∈ Y ( p ) of weight µ , gives ν A ∈ W ( p 2) µ + p 2 . 8 / 16

  9. Tableaux Vectors i 1 i 1 � i 2 i 2 → I = ( i 1 , . . . , i k ) → X I := sgn( σ ) X i σ (1) · · · X i σ ( k ) : σ ∈ S k i k Definition For A = ( A [1] , . . . , A [ l ]) ∈ Y ( p ), s.s. Young tableau with l columns, define ω A := X A [ l ] X A [ l − 1] · · · X A [1] (1) . Remark For each I, X I = 0 iff k > p. 9 / 16

  10. Basis Vectors 1 1 2 4 A = �→ ω A = X 4 X (2 , 4) X (1 , 3 , 5) X (1 , 2 , 5) (1) . 2 3 4 5 5 Theorem W ( p 2 ) has basis { ω A ∈ W ( p 2) : A ∈ Y ( p ) } , with ω A ∈ W ( p 2 ) µ A + p 2 . Proof strategy: Construct a total order < on Y ( p ) such that ω A / ∈ span { ω B : B ∈ Y ( p ) , B < A } . 10 / 16

  11. Monomial Expansion M n , p ( N 0 ) , n by p positive integer matrices γ ∈ M n , p ( N 0 ) p n � � µ γ = ( µ 1 , j , . . . , µ n , j ) , and η γ = ( µ i , 1 , . . . , µ i , p ) j =1 i =1 p n � � x γ = x γ i , j e η γ = e ( η γ ) 1 · · · e ( η γ ) p and . p i , j 1 i =1 j =1 Proposition For A ∈ Y ( p ) of shape λ A ∈ P , � ω A = ( λ A ) ′ 1 ! · · · ( λ A ) ′ c A ( γ ) x γ e η γ ( λ A ) 1 ! γ ∈ Mn , p ( N 0) µ A = µγ 11 / 16

  12. Monomial Coefficients A k ∈ Y ( p ) k ’th subtableaux of A ∈ Y ( p ) , A = 1 1 2 4 ⇒ A 4 = 1 1 2 4 , A 3 = 1 1 2 , A 2 = 1 1 2 = , A 2 3 4 2 3 4 2 3 2 Theorem Let A ∈ Y ( p ) n ( p ) , σ ∈ S µ A and γ ∈ M n , p ( N 0 ) with µ γ = µ A . p 1 � � sgn( σ )( − 1) N A ( γ ) c A ( γ ) = sgn( L A ( σ, α )) ( η γ ) 1 ! · · · ( η γ ) p ! σ ∈ S µ A α =1 The values N A ( γ ) and L A ( σ, α ) being combinatorial expressions in γ ∈ M n , p ( N 0 ) , λ A 1 , . . . , λ A n ∈ P and σ ∈ S ( µ A ) 1 × · · · × S ( µ A ) n 12 / 16

  13. Leading Monomial Proposition For A , B ∈ Y ( p ) , B < A, then c A ( γ ) ∈ Z for all γ ∈ M n , p ( N 0 ) and a) c A ( γ A ) � = 0 b) c B ( γ A ) = 0 Where ( γ A ) i , j = # { Number of i’s in the j’th row of A } = ( λ A i ) j − ( λ A i − 1 ) j d µ := dim W ( p 2) µ + p 2 . { A 1 , . . . , A d µ } ⊂ Y ( p ) , tableaux of weight µ s.t. A 1 < · · · < A d µ . 13 / 16

  14. Action on Basis Elements Inner product on W ( p 2 ) ⊂ C [ R np ] ⊗ C ℓ p : � x γ e η , x γ ′ e η ′ � := δ γ,γ ′ δ η,η ′ . For v ∈ W ( p 2 ) and k , l ∈ { 1 , . . . , d µ } , f µ ( v ) l = � x γ Al e η γ Al , v � ( U µ ) k , l = c A k ( γ A l ) , and 1 ω B = ( λ B ) 1 ! · · · ( λ B ) n ! ω B . Proposition The matrix U µ is integer and upper triangular, and for any v ∈ dim( W n ( p )) µ + p 2 , d µ � ( U − 1 v = µ ( f µ ( v )) k ω A l . k =1 14 / 16

  15. Action on Basis Elements X i ω A ∈ W n ( p ) µ A + ǫ i + p 2 , and D i ω A ∈ W n ( p ) µ A − ǫ i + p 2 . Proposition Let A , B ∈ Y ( p ) and i ∈ { 1 , . . . , n } . Then p α − 1 � x γ A e η γ A , X i ¯ � � ( − 1) ( λ A ) β c B ( γ A − ǫ i ,α ) ω B ( p ) � = α =1 β =1 p α − 1 � x γ A e η γ A , D i ¯ � � ( − 1) ( λ A ) β (( γ A ) i ,α + 1) c B ( γ A + ǫ i ,α ) . ω B ( p ) � = α =1 β =1 This determines the vector f µ ( X i ω B ) and f µ ( D i ω B ), and thus the action. 15 / 16

  16. Example We calculate X i ω B for B = 2 3 , µ B = (0 , 1 , 1 , 1), i = 1: 4 1 1 4 1 3 A 1 = 2 , A 2 = , A 3 = , A 4 = 2 4 , A 5 = 1 3 1 3 4 , 2 2 3 2 3 4 4 1 2 1 2 1 2 4 1 2 3 1 2 3 4 . A 6 = , A 7 = 3 4 , A 8 = , A 9 = , A 10 = 3 3 4 4 1 − 1 1 1 − 1 − 1 − 1 1 − 1 1 − 1     0 1 0 − 1 1 0 1 − 1 0 − 1 − 1 0 0 1 1 − 1 0 0 0 − 1 1 1         0 0 0 1 − 1 0 0 0 1 1 0     0 0 0 0 1 0 0 0 0 − 1 − 1     U µ B + ǫ i = , f µ B + ǫ i = .     0 0 0 0 0 1 1 − 1 1 − 1 − 1     0 0 0 0 0 0 1 − 1 − 1 − 1 1         0 0 0 0 0 0 0 1 0 1 0     0 0 0 0 0 0 0 0 1 − 1 1 0 0 0 0 0 0 0 0 0 1 0 X 1 ω 2 3 = − 8 ω A 1 − 4 ω A 2 +3 ω A 3 − 2 ω A 4 − 1 ω A 5 − 4 ω A 6 +2 ω A 7 + ω A 9 . 4 16 / 16

Recommend


More recommend