Polydisperse spherical cap packings David de Laat Joint work with Fernando M. de Oliveira Filho and Frank Vallentin Optimal and near optimal configurations on lattices and manifolds Oberwolfach - August 24, 2012
Polydisperse spherical cap packings Given a set { α 1 , . . . , α N } of spherical cap angles: What is the maximal spherical cap packing density? x α C ( x , α ) = { y ∈ S n − 1 : x · y ≥ cos α } w ( α ) = normalized cap area of a cap with angle α
The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N }
The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N } ( x , i ) ∼ ( y , j ) ⇔ cos( α i + α j ) < x · y and ( x , i ) � = ( y , j )
The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N } ( x , i ) ∼ ( y , j ) ⇔ cos( α i + α j ) < x · y and ( x , i ) � = ( y , j ) w ( x , i ) = w ( α i )
The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N } ( x , i ) ∼ ( y , j ) ⇔ cos( α i + α j ) < x · y and ( x , i ) � = ( y , j ) w ( x , i ) = w ( α i ) The weighted independence number gives the maximal packing density
The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N } ( x , i ) ∼ ( y , j ) ⇔ cos( α i + α j ) < x · y and ( x , i ) � = ( y , j ) w ( x , i ) = w ( α i ) The weighted independence number gives the maximal packing density w ( G ) = inf M : K − √ w ⊗ √ w ∈ C ( V × V ) � 0 , ϑ ′ K ( u , u ) ≤ M for all u ∈ V , K ( u , v ) ≤ 0 for all { u , v } �∈ E where u � = v .
The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N } ( x , i ) ∼ ( y , j ) ⇔ cos( α i + α j ) < x · y and ( x , i ) � = ( y , j ) w ( x , i ) = w ( α i ) The weighted independence number gives the maximal packing density w ( G ) = inf M : K − √ w ⊗ √ w ∈ C ( V × V ) � 0 , ϑ ′ K ( u , u ) ≤ M for all u ∈ V , K ( u , v ) ≤ 0 for all { u , v } �∈ E where u � = v . Group action: O ( n ) × V → V , A ( x , i ) = ( Ax , i )
The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N } ( x , i ) ∼ ( y , j ) ⇔ cos( α i + α j ) < x · y and ( x , i ) � = ( y , j ) w ( x , i ) = w ( α i ) The weighted independence number gives the maximal packing density w ( G ) = inf M : K − √ w ⊗ √ w ∈ C ( V × V ) � 0 , ϑ ′ K ( u , u ) ≤ M for all u ∈ V , K ( u , v ) ≤ 0 for all { u , v } �∈ E where u � = v . Group action: O ( n ) × V → V , A ( x , i ) = ( Ax , i ) By averaging a feasible solution under the group action, we see that we can restrict to O ( n ) invariant kernels: Replace C ( V × V ) � 0 by C ( V × V ) O ( n ) � 0
The theta number for the packing graph V = S n − 1 A kernel K ∈ C ( V × V ) is positive and O ( n )-invariant if and only if ∞ � f k P n K ( x , y ) = k ( x · y ) , k =0 where f k ≥ 0 for all k (Schoenberg)
The theta number for the packing graph V = S n − 1 ×{ 1 , . . . , N } A kernel K ∈ C ( V × V ) is positive and O ( n )-invariant if and only if ∞ � f ij , k P n K (( x , i ) , ( y , j )) = k ( x · y ) , k =0 where ( f ij , k ) N i , j =1 � 0 for all k
The theta number for the packing graph The theta number program for the packing graph reduces to inf M : ( f ij , 0 − w ( α i ) 1 / 2 w ( α j ) 1 / 2 ) N i , j =1 � 0 , ( f ij , k ) N i , j =1 � 0 for k ≥ 1 , f ij ( u ) ≤ 0 whenever − 1 ≤ u ≤ cos( α i + α j ) , f ii (1) ≤ M for all i = 1 , . . . , N where f ij ( u ) = � ∞ k =0 f ij , k P n k ( u )
The theta number for the packing graph The theta number program for the packing graph reduces to inf M : ( f ij , 0 − w ( α i ) 1 / 2 w ( α j ) 1 / 2 ) N i , j =1 � 0 , ( f ij , k ) N i , j =1 � 0 for k ≥ 1 , f ij ( u ) ≤ 0 whenever − 1 ≤ u ≤ cos( α i + α j ) , f ii (1) ≤ M for all i = 1 , . . . , N where f ij ( u ) = � ∞ k =0 f ij , k P n k ( u ) For N = 1 this reduces to the Delsarte, Goethels, and Seidel LP bound
The theta number for the packing graph The theta number program for the packing graph reduces to inf M : ( f ij , 0 − w ( α i ) 1 / 2 w ( α j ) 1 / 2 ) N i , j =1 � 0 , ( f ij , k ) N i , j =1 � 0 for k ≥ 1 , f ij ( u ) ≤ 0 whenever − 1 ≤ u ≤ cos( α i + α j ) , f ii (1) ≤ M for all i = 1 , . . . , N where f ij ( u ) = � ∞ k =0 f ij , k P n k ( u ) For N = 1 this reduces to the Delsarte, Goethels, and Seidel LP bound If p is a real even univariate polynomial, then p ( x ) ≥ 0 for all x ∈ [ a , b ] ⇔ p ( x ) = q ( x ) + ( x − a )( b − x ) r ( x ) where q and r are SOS polynomials
A direct proof of the upper bounding property Let � m i =1 C ( x i , α r ( i ) ) be a packing, r : { 1 , . . . , m } → { 1 , . . . , N }
A direct proof of the upper bounding property Let � m i =1 C ( x i , α r ( i ) ) be a packing, r : { 1 , . . . , m } → { 1 , . . . , N } m � � � S := w ( α r ( i ) ) w ( α r ( j ) ) f r ( i ) r ( j ) ( x i · x j ) i , j =1
A direct proof of the upper bounding property Let � m i =1 C ( x i , α r ( i ) ) be a packing, r : { 1 , . . . , m } → { 1 , . . . , N } m � � � S := w ( α r ( i ) ) w ( α r ( j ) ) f r ( i ) r ( j ) ( x i · x j ) i , j =1 m m � � S ≤ w ( α r ( i ) ) f r ( i ) r ( i ) (1) ≤ w ( α r ( i ) ) max { f ii ( N ): i = 1 , . . . , N } i =1 i =1
A direct proof of the upper bounding property Let � m i =1 C ( x i , α r ( i ) ) be a packing, r : { 1 , . . . , m } → { 1 , . . . , N } m � � � S := w ( α r ( i ) ) w ( α r ( j ) ) f r ( i ) r ( j ) ( x i · x j ) i , j =1 m m � � S ≤ w ( α r ( i ) ) f r ( i ) r ( i ) (1) ≤ w ( α r ( i ) ) max { f ii ( N ): i = 1 , . . . , N } i =1 i =1 m ∞ � � � � w ( α r ( j ) ) f r ( i ) r ( j ) , k P n S = w ( α r ( i ) ) k ( x i · x j ) k =0 i , j =1 m � � � ≥ w ( α r ( i ) ) w ( α r ( j ) ) f r ( i ) r ( j ) , 0 i , j =1 m � � � � � ≥ w ( α r ( i ) ) w ( α r ( j ) ) w ( α r ( i ) ) w ( α r ( j ) ) i , j =1
A direct proof of the upper bounding property Let � m i =1 C ( x i , α r ( i ) ) be a packing, r : { 1 , . . . , m } → { 1 , . . . , N } m � � � S := w ( α r ( i ) ) w ( α r ( j ) ) f r ( i ) r ( j ) ( x i · x j ) i , j =1 m m � � S ≤ w ( α r ( i ) ) f r ( i ) r ( i ) (1) ≤ w ( α r ( i ) ) max { f ii ( N ): i = 1 , . . . , N } i =1 i =1 m ∞ � � � � w ( α r ( j ) ) f r ( i ) r ( j ) , k P n S = w ( α r ( i ) ) k ( x i · x j ) k =0 i , j =1 m � � � ≥ w ( α r ( i ) ) w ( α r ( j ) ) f r ( i ) r ( j ) , 0 i , j =1 m � � � � � ≥ w ( α r ( i ) ) w ( α r ( j ) ) w ( α r ( i ) ) w ( α r ( j ) ) i , j =1 So, max { f ii ( N ): i = 1 , . . . , N } ≥ � m i =1 w ( α r ( i ) ) .
Single size packings on the 2-sphere 0 . 90 Icosahedron Octahedron 0 . 88 0 . 86 Simplex 0 . 84 0 . 82 0 . 80 0 . 78 0 . 76 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
Geometric bound on the 2-sphere (Florian 2001) α 1 α 2 α 1 ◮ D ( α 1 , α 1 , α 2 ) = area of shaded part / area of spherical triangle ◮ max 1 ≤ i ≤ j ≤ k ≤ N D ( α i , α j , α k ) upper bounds the packing density
Single size packings on the 4-sphere 600-cell 0 . 75 Cross-polytope 0 . 70 Simplex 0 . 65 0 . 60 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
Single size packings on the 5-sphere 0 . 65 0 . 60 Cross-polytope Semicube 0 . 55 Simplex 0 . 50 0 . 45 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
Binary packings on the 2-sphere 0 . 96 1 . 0 0 . 94 0 . 92 0 . 8 0 . 9 0 . 88 0 . 6 0 . 86 0 . 84 0 . 4 0 . 82 0 . 8 0 . 78 0 . 2 0 . 76 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
SDP bound / Geometric bound 1 . 0 Geo. 0 . 8 0 . 6 0 . 4 SDP 0 . 2 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
Binary packings on the 4-sphere 0 . 89 1 . 0 0 . 86 0 . 83 0 . 8 0 . 8 0 . 77 0 . 6 0 . 74 0 . 71 0 . 4 0 . 68 0 . 65 0 . 62 0 . 2 0 . 59 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
Binary packings on the 5 sphere 0 . 8 1 . 0 0 . 77 0 . 74 0 . 8 0 . 71 0 . 68 0 . 65 0 . 6 0 . 62 0 . 59 0 . 4 0 . 56 0 . 53 0 . 5 0 . 2 0 . 47 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
The truncated octahedron packing This packing is maximal: ◮ it has density 0 . 9056 . . . ◮ the semidefinite program gives 0 . 9079 . . . ◮ the next packing (4 big caps, 19 small caps) would have density 0 . 9103 . . .
The n -prism packings Packings associated to the n -prism ◮ The geometric bound is tight for n ≥ 6 ◮ For n = 5 there is a geometrical proof (Florian, Heppes 1999) ◮ The numerical solution suggest that the semidefinite programming bound is tight for n = 5
The bound is tight for the 5-prism We need to find functions 4 � f ij , k P n f ij ( u ) = k ( u ) k =0 that satisfy the constraints of the theorem with max { f 11 (1) , f 22 (1) } = density of the 5-prism packing
The bound is tight for the 5-prism We need to find functions 4 � f ij , k P n f ij ( u ) = k ( u ) k =0 that satisfy the constraints of the theorem with max { f 11 (1) , f 22 (1) } = density of the 5-prism packing ◮ Assuming the bound is tight for this configuration, all inequalities in the proof of the bound must be equalities
Recommend
More recommend