polydisperse spherical cap packings
play

Polydisperse spherical cap packings David de Laat Joint work with - PowerPoint PPT Presentation

Polydisperse spherical cap packings David de Laat Joint work with Fernando M. de Oliveira Filho and Frank Vallentin Optimal and near optimal configurations on lattices and manifolds Oberwolfach - August 24, 2012 Polydisperse spherical cap


  1. Polydisperse spherical cap packings David de Laat Joint work with Fernando M. de Oliveira Filho and Frank Vallentin Optimal and near optimal configurations on lattices and manifolds Oberwolfach - August 24, 2012

  2. Polydisperse spherical cap packings Given a set { α 1 , . . . , α N } of spherical cap angles: What is the maximal spherical cap packing density? x α C ( x , α ) = { y ∈ S n − 1 : x · y ≥ cos α } w ( α ) = normalized cap area of a cap with angle α

  3. The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N }

  4. The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N } ( x , i ) ∼ ( y , j ) ⇔ cos( α i + α j ) < x · y and ( x , i ) � = ( y , j )

  5. The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N } ( x , i ) ∼ ( y , j ) ⇔ cos( α i + α j ) < x · y and ( x , i ) � = ( y , j ) w ( x , i ) = w ( α i )

  6. The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N } ( x , i ) ∼ ( y , j ) ⇔ cos( α i + α j ) < x · y and ( x , i ) � = ( y , j ) w ( x , i ) = w ( α i ) The weighted independence number gives the maximal packing density

  7. The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N } ( x , i ) ∼ ( y , j ) ⇔ cos( α i + α j ) < x · y and ( x , i ) � = ( y , j ) w ( x , i ) = w ( α i ) The weighted independence number gives the maximal packing density w ( G ) = inf M : K − √ w ⊗ √ w ∈ C ( V × V ) � 0 , ϑ ′ K ( u , u ) ≤ M for all u ∈ V , K ( u , v ) ≤ 0 for all { u , v } �∈ E where u � = v .

  8. The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N } ( x , i ) ∼ ( y , j ) ⇔ cos( α i + α j ) < x · y and ( x , i ) � = ( y , j ) w ( x , i ) = w ( α i ) The weighted independence number gives the maximal packing density w ( G ) = inf M : K − √ w ⊗ √ w ∈ C ( V × V ) � 0 , ϑ ′ K ( u , u ) ≤ M for all u ∈ V , K ( u , v ) ≤ 0 for all { u , v } �∈ E where u � = v . Group action: O ( n ) × V → V , A ( x , i ) = ( Ax , i )

  9. The theta number for the packing graph Packing graph G : V = S n − 1 × { 1 , . . . , N } ( x , i ) ∼ ( y , j ) ⇔ cos( α i + α j ) < x · y and ( x , i ) � = ( y , j ) w ( x , i ) = w ( α i ) The weighted independence number gives the maximal packing density w ( G ) = inf M : K − √ w ⊗ √ w ∈ C ( V × V ) � 0 , ϑ ′ K ( u , u ) ≤ M for all u ∈ V , K ( u , v ) ≤ 0 for all { u , v } �∈ E where u � = v . Group action: O ( n ) × V → V , A ( x , i ) = ( Ax , i ) By averaging a feasible solution under the group action, we see that we can restrict to O ( n ) invariant kernels: Replace C ( V × V ) � 0 by C ( V × V ) O ( n ) � 0

  10. The theta number for the packing graph V = S n − 1 A kernel K ∈ C ( V × V ) is positive and O ( n )-invariant if and only if ∞ � f k P n K ( x , y ) = k ( x · y ) , k =0 where f k ≥ 0 for all k (Schoenberg)

  11. The theta number for the packing graph V = S n − 1 ×{ 1 , . . . , N } A kernel K ∈ C ( V × V ) is positive and O ( n )-invariant if and only if ∞ � f ij , k P n K (( x , i ) , ( y , j )) = k ( x · y ) , k =0 where ( f ij , k ) N i , j =1 � 0 for all k

  12. The theta number for the packing graph The theta number program for the packing graph reduces to inf M : ( f ij , 0 − w ( α i ) 1 / 2 w ( α j ) 1 / 2 ) N i , j =1 � 0 , ( f ij , k ) N i , j =1 � 0 for k ≥ 1 , f ij ( u ) ≤ 0 whenever − 1 ≤ u ≤ cos( α i + α j ) , f ii (1) ≤ M for all i = 1 , . . . , N where f ij ( u ) = � ∞ k =0 f ij , k P n k ( u )

  13. The theta number for the packing graph The theta number program for the packing graph reduces to inf M : ( f ij , 0 − w ( α i ) 1 / 2 w ( α j ) 1 / 2 ) N i , j =1 � 0 , ( f ij , k ) N i , j =1 � 0 for k ≥ 1 , f ij ( u ) ≤ 0 whenever − 1 ≤ u ≤ cos( α i + α j ) , f ii (1) ≤ M for all i = 1 , . . . , N where f ij ( u ) = � ∞ k =0 f ij , k P n k ( u ) For N = 1 this reduces to the Delsarte, Goethels, and Seidel LP bound

  14. The theta number for the packing graph The theta number program for the packing graph reduces to inf M : ( f ij , 0 − w ( α i ) 1 / 2 w ( α j ) 1 / 2 ) N i , j =1 � 0 , ( f ij , k ) N i , j =1 � 0 for k ≥ 1 , f ij ( u ) ≤ 0 whenever − 1 ≤ u ≤ cos( α i + α j ) , f ii (1) ≤ M for all i = 1 , . . . , N where f ij ( u ) = � ∞ k =0 f ij , k P n k ( u ) For N = 1 this reduces to the Delsarte, Goethels, and Seidel LP bound If p is a real even univariate polynomial, then p ( x ) ≥ 0 for all x ∈ [ a , b ] ⇔ p ( x ) = q ( x ) + ( x − a )( b − x ) r ( x ) where q and r are SOS polynomials

  15. A direct proof of the upper bounding property Let � m i =1 C ( x i , α r ( i ) ) be a packing, r : { 1 , . . . , m } → { 1 , . . . , N }

  16. A direct proof of the upper bounding property Let � m i =1 C ( x i , α r ( i ) ) be a packing, r : { 1 , . . . , m } → { 1 , . . . , N } m � � � S := w ( α r ( i ) ) w ( α r ( j ) ) f r ( i ) r ( j ) ( x i · x j ) i , j =1

  17. A direct proof of the upper bounding property Let � m i =1 C ( x i , α r ( i ) ) be a packing, r : { 1 , . . . , m } → { 1 , . . . , N } m � � � S := w ( α r ( i ) ) w ( α r ( j ) ) f r ( i ) r ( j ) ( x i · x j ) i , j =1 m m � � S ≤ w ( α r ( i ) ) f r ( i ) r ( i ) (1) ≤ w ( α r ( i ) ) max { f ii ( N ): i = 1 , . . . , N } i =1 i =1

  18. A direct proof of the upper bounding property Let � m i =1 C ( x i , α r ( i ) ) be a packing, r : { 1 , . . . , m } → { 1 , . . . , N } m � � � S := w ( α r ( i ) ) w ( α r ( j ) ) f r ( i ) r ( j ) ( x i · x j ) i , j =1 m m � � S ≤ w ( α r ( i ) ) f r ( i ) r ( i ) (1) ≤ w ( α r ( i ) ) max { f ii ( N ): i = 1 , . . . , N } i =1 i =1 m ∞ � � � � w ( α r ( j ) ) f r ( i ) r ( j ) , k P n S = w ( α r ( i ) ) k ( x i · x j ) k =0 i , j =1 m � � � ≥ w ( α r ( i ) ) w ( α r ( j ) ) f r ( i ) r ( j ) , 0 i , j =1 m � � � � � ≥ w ( α r ( i ) ) w ( α r ( j ) ) w ( α r ( i ) ) w ( α r ( j ) ) i , j =1

  19. A direct proof of the upper bounding property Let � m i =1 C ( x i , α r ( i ) ) be a packing, r : { 1 , . . . , m } → { 1 , . . . , N } m � � � S := w ( α r ( i ) ) w ( α r ( j ) ) f r ( i ) r ( j ) ( x i · x j ) i , j =1 m m � � S ≤ w ( α r ( i ) ) f r ( i ) r ( i ) (1) ≤ w ( α r ( i ) ) max { f ii ( N ): i = 1 , . . . , N } i =1 i =1 m ∞ � � � � w ( α r ( j ) ) f r ( i ) r ( j ) , k P n S = w ( α r ( i ) ) k ( x i · x j ) k =0 i , j =1 m � � � ≥ w ( α r ( i ) ) w ( α r ( j ) ) f r ( i ) r ( j ) , 0 i , j =1 m � � � � � ≥ w ( α r ( i ) ) w ( α r ( j ) ) w ( α r ( i ) ) w ( α r ( j ) ) i , j =1 So, max { f ii ( N ): i = 1 , . . . , N } ≥ � m i =1 w ( α r ( i ) ) .

  20. Single size packings on the 2-sphere 0 . 90 Icosahedron Octahedron 0 . 88 0 . 86 Simplex 0 . 84 0 . 82 0 . 80 0 . 78 0 . 76 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

  21. Geometric bound on the 2-sphere (Florian 2001) α 1 α 2 α 1 ◮ D ( α 1 , α 1 , α 2 ) = area of shaded part / area of spherical triangle ◮ max 1 ≤ i ≤ j ≤ k ≤ N D ( α i , α j , α k ) upper bounds the packing density

  22. Single size packings on the 4-sphere 600-cell 0 . 75 Cross-polytope 0 . 70 Simplex 0 . 65 0 . 60 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

  23. Single size packings on the 5-sphere 0 . 65 0 . 60 Cross-polytope Semicube 0 . 55 Simplex 0 . 50 0 . 45 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

  24. Binary packings on the 2-sphere 0 . 96 1 . 0 0 . 94 0 . 92 0 . 8 0 . 9 0 . 88 0 . 6 0 . 86 0 . 84 0 . 4 0 . 82 0 . 8 0 . 78 0 . 2 0 . 76 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

  25. SDP bound / Geometric bound 1 . 0 Geo. 0 . 8 0 . 6 0 . 4 SDP 0 . 2 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

  26. Binary packings on the 4-sphere 0 . 89 1 . 0 0 . 86 0 . 83 0 . 8 0 . 8 0 . 77 0 . 6 0 . 74 0 . 71 0 . 4 0 . 68 0 . 65 0 . 62 0 . 2 0 . 59 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

  27. Binary packings on the 5 sphere 0 . 8 1 . 0 0 . 77 0 . 74 0 . 8 0 . 71 0 . 68 0 . 65 0 . 6 0 . 62 0 . 59 0 . 4 0 . 56 0 . 53 0 . 5 0 . 2 0 . 47 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

  28. The truncated octahedron packing This packing is maximal: ◮ it has density 0 . 9056 . . . ◮ the semidefinite program gives 0 . 9079 . . . ◮ the next packing (4 big caps, 19 small caps) would have density 0 . 9103 . . .

  29. The n -prism packings Packings associated to the n -prism ◮ The geometric bound is tight for n ≥ 6 ◮ For n = 5 there is a geometrical proof (Florian, Heppes 1999) ◮ The numerical solution suggest that the semidefinite programming bound is tight for n = 5

  30. The bound is tight for the 5-prism We need to find functions 4 � f ij , k P n f ij ( u ) = k ( u ) k =0 that satisfy the constraints of the theorem with max { f 11 (1) , f 22 (1) } = density of the 5-prism packing

  31. The bound is tight for the 5-prism We need to find functions 4 � f ij , k P n f ij ( u ) = k ( u ) k =0 that satisfy the constraints of the theorem with max { f 11 (1) , f 22 (1) } = density of the 5-prism packing ◮ Assuming the bound is tight for this configuration, all inequalities in the proof of the bound must be equalities

Recommend


More recommend