Poisson Subsampled RΓ©nyi Differential Privacy Yuqing Zhu joint work with Yu-Xiang Wang 1
Privacy Amplification by Sampling π πΏπ, πΏπ -DP π, π -DP Sampling probability π [KLNRSβ08], [Li et al., 2011] π, π½ -RΓ©nyi DP Whatβs the optimal bound ? Strong composition tool 2
Example: The Noisy SGD Algorithm Song et al. 2013; Bassily et al. 2014 ! 1 X r f i ( β t ) + Z t β t +1 β t οΏ½ β t |I| i β I 1.Randomly chosen minibatch (Poisson subsampling) 2.Then add Gaussian noise (Gaussian mechanism) RDP analysis for subsampled Gaussian mechanism (Abadi et al., 2016) Really what makes Deep Learning with Differential Privacy practical 3
Exact RDP of Subsampled Mechanism Let M be any randomized algorithm that obeys ( Ξ± , Ο΅ ( Ξ± )) β RDP Ξ³ be the subsampling probability and for integer Ξ±β₯ 2 Asymptotic rate π (βππππππ π½ β€ Ξ(π½πΏ 4 π 2 ) This asymptotic rate holds for any mechanism M ! 4
Exact RDP of Subsampled Mechanism Let M be any randomized algorithm that obeys ( Ξ± , Ο΅ ( Ξ± )) β RDP Ξ³ be the subsampling probability and for integer Ξ±β₯ 2 π πβπ»πππππ π· β€ π π· π¦π©π‘{ π β πΉ π·Bπ π·πΉ β πΉ + π + π· π πΉ π π β πΉ π·Bπ π π π π· +π F π· π β πΉ π·Bβ πΉ β π βBπ π(β) } β βIπ This bound is optimal, up to a factor of 3 on a low order term 5
Exact Amplification Bound for RDP Let M be any randomized algorithm that obeys ( Ξ± , Ο΅ ( Ξ± )) β RDP Ξ³ be the subsampling probability and for integer Ξ±β₯ 2 π πβπ»πππππ π· β€ π π· π¦π©π‘{ π β πΉ π·Bπ π·πΉ β πΉ + π + π· π πΉ π π β πΉ π·Bπ π π π π· +π F π· π β πΉ π·Bβ πΉ β π βBπ π(β) } β βIπ Get rid of it Matches the lower bound when M is Gaussian or Laplace mechanism 6
οΏ½ Overall ( π , π )-DP over composition π·(π³) π·( π³ ) Subsampled Gaussian Mechanism π = 5, πΏ = 1π β 3 7
Low Privacy Regime Subsampled Gaussian Mechanism π = 1, πΏ = 1π β 3 8
Thank you! Poster Number Pacific Ballroom #178 Code available: https://github.com/yuxiangw/autodp Or just use: pip install autodp Get Paper 9
Recommend
More recommend