poisson subsampled r nyi differential privacy
play

Poisson Subsampled Rnyi Differential Privacy Yuqing Zhu joint work - PowerPoint PPT Presentation

Poisson Subsampled Rnyi Differential Privacy Yuqing Zhu joint work with Yu-Xiang Wang 1 Privacy Amplification by Sampling , -DP , -DP Sampling probability [KLNRS08], [Li et al., 2011] , -Rnyi


  1. Poisson Subsampled RΓ©nyi Differential Privacy Yuqing Zhu joint work with Yu-Xiang Wang 1

  2. Privacy Amplification by Sampling 𝑃 π›Ώπœ—, π›Ώπœ€ -DP πœ—, πœ€ -DP Sampling probability 𝛅 [KLNRS’08], [Li et al., 2011] πœ—, 𝛽 -RΓ©nyi DP What’s the optimal bound ? Strong composition tool 2

  3. Example: The Noisy SGD Algorithm Song et al. 2013; Bassily et al. 2014 ! 1 X r f i ( βœ“ t ) + Z t βœ“ t +1 βœ“ t οΏ½ ⌘ t |I| i ∈ I 1.Randomly chosen minibatch (Poisson subsampling) 2.Then add Gaussian noise (Gaussian mechanism) RDP analysis for subsampled Gaussian mechanism (Abadi et al., 2016) Really what makes Deep Learning with Differential Privacy practical 3

  4. Exact RDP of Subsampled Mechanism Let M be any randomized algorithm that obeys ( Ξ± , Ο΅ ( Ξ± )) βˆ’ RDP Ξ³ be the subsampling probability and for integer Ξ±β‰₯ 2 Asymptotic rate πœ— (βˆ˜π’•π’ƒπ’π’’π’Žπ’‡ 𝛽 ≀ Ο(𝛽𝛿 4 πœ— 2 ) This asymptotic rate holds for any mechanism M ! 4

  5. Exact RDP of Subsampled Mechanism Let M be any randomized algorithm that obeys ( Ξ± , Ο΅ ( Ξ± )) βˆ’ RDP Ξ³ be the subsampling probability and for integer Ξ±β‰₯ 2 𝝑 πβˆ˜π‘»π’ƒπ’π’’π’Žπ’‡ 𝜷 ≀ 𝟐 𝜷 𝐦𝐩𝐑{ 𝟐 βˆ’ 𝜹 𝜷B𝟐 𝜷𝜹 βˆ’ 𝜹 + 𝟐 + 𝜷 πŸ‘ 𝜹 πŸ‘ 𝟐 βˆ’ 𝜹 𝜷BπŸ‘ 𝒇 𝝑 πŸ‘ 𝜷 +πŸ’ F 𝜷 𝟐 βˆ’ 𝜹 𝜷Bβ„“ 𝜹 β„“ 𝒇 β„“B𝟐 𝝑(β„“) } β„“ β„“IπŸ’ This bound is optimal, up to a factor of 3 on a low order term 5

  6. Exact Amplification Bound for RDP Let M be any randomized algorithm that obeys ( Ξ± , Ο΅ ( Ξ± )) βˆ’ RDP Ξ³ be the subsampling probability and for integer Ξ±β‰₯ 2 𝝑 πβˆ˜π‘»π’ƒπ’π’’π’Žπ’‡ 𝜷 ≀ 𝟐 𝜷 𝐦𝐩𝐑{ 𝟐 βˆ’ 𝜹 𝜷B𝟐 𝜷𝜹 βˆ’ 𝜹 + 𝟐 + 𝜷 πŸ‘ 𝜹 πŸ‘ 𝟐 βˆ’ 𝜹 𝜷BπŸ‘ 𝒇 𝝑 πŸ‘ 𝜷 +πŸ’ F 𝜷 𝟐 βˆ’ 𝜹 𝜷Bβ„“ 𝜹 β„“ 𝒇 β„“B𝟐 𝝑(β„“) } β„“ β„“IπŸ’ Get rid of it Matches the lower bound when M is Gaussian or Laplace mechanism 6

  7. οΏ½ Overall ( πœ— , πœ€ )-DP over composition 𝑷(𝑳) 𝑷( 𝑳 ) Subsampled Gaussian Mechanism 𝜏 = 5, 𝛿 = 1𝑓 βˆ’ 3 7

  8. Low Privacy Regime Subsampled Gaussian Mechanism 𝜏 = 1, 𝛿 = 1𝑓 βˆ’ 3 8

  9. Thank you! Poster Number Pacific Ballroom #178 Code available: https://github.com/yuxiangw/autodp Or just use: pip install autodp Get Paper 9

Recommend


More recommend