piperazine pz and methyldiethanolamine mdea
play

PIPERAZINE (PZ) AND METHYLDIETHANOLAMINE (MDEA) INTERRELATIONSHIPS IN - PowerPoint PPT Presentation

PIPERAZINE (PZ) AND METHYLDIETHANOLAMINE (MDEA) INTERRELATIONSHIPS IN CO 2 ABSORPTION BY AQUEOUS AMINE MIXTURES Camilla Costa 1 , Renzo Di Felice 2 , Paolo Moretti 1 , Maddalena Oliva 1 , Rouzbeh Ramezani 2 1 Dipartimento di Chimica e Chimica


  1. PIPERAZINE (PZ) AND METHYLDIETHANOLAMINE (MDEA) INTERRELATIONSHIPS IN CO 2 ABSORPTION BY AQUEOUS AMINE MIXTURES Camilla Costa 1 , Renzo Di Felice 2 , Paolo Moretti 1 , Maddalena Oliva 1 , Rouzbeh Ramezani 2 1 Dipartimento di Chimica e Chimica Industriale, Università di Genova, Genova, Italy 2 Dipartimento di Ingegneria Civile Chimica ed Ambientale, Università di Genova, Genova, Italy renzo.difelice@unige.it www.react.dicca.unige.it

  2. Summary • The use of a-MDEA (MDEA + PZ) as industrial solvent in CO 2 capture process is highlighted • Very little however is known on the actual behaviour of the absorbent mixture • Experiments were carried out to throw some light on the problem • Main results show that interaction between PZ and MDEA is quite limited (e.g. no shuttle effect)

  3. a-MDEA as absorbent medium

  4. a-MDEA PROCESS

  5. advantages lauded …

  6. more advantages lauded …

  7. gas-liquid CO 2 equilibrium data taken from Bishnoi (2000)

  8. not quite clear how it works!

  9. experimental investigation FM: flow meter; SP: sampling point; TC: temperature controller; MC: membrane contactor; S: magnetic stirrer; GC: gas chromatograph; C: calcimeter

  10. MDEA 10% (0.84 M) gas side liquid side (practically no enhancement on the process rate compared to pure water)

  11. MDEA + CO 2 (chemistry) − + H 3 O + CO 2 + 2H 2 O ⇌ HCO 3 (R1) 2H 2 O ⇌ OH − + H 3 O + (R2) − + H 2 O ⇌ CO 3 2− + H 3 O + HCO 3 (R3) Protonation: MDEA + H 3 O + ⇌ MDEAH + + H 2 O (R4)

  12. PZ 2% (0.23 M) gas side liquid side (the enhancement on the process rate evident for about 3 h)

  13. PZ + CO 2 (Chemistry) − + H 3 O + CO 2 + 2H 2 O ⇌ HCO 3 (R1) 2H 2 O ⇌ OH − + H 3 O + (R2) − + H 2 O ⇌ CO 3 2− + H 3 O + HCO 3 (R3) Carbamate and dicarbamate formation: PZ + CO 2 + H 2 O ⇌ PZCOO − + H 3 O + (R5) PZCOO − + CO 2 + H 2 O ⇌ PZ COO − 2 + H 3 O + (R6) Protonations: PZ + H 3 O + ⇌ PZH + + H 2 O (R7) PZCOO − + H 3 O + ⇌ H + PZCOO − + H 2 O (R8)

  14. 10% MDEA + 2% PZ gas side liquid side (after 12h, based on PZ only) (the enhancement on the process rate evident for about 12 h)

  15. MDEA + PZ + CO 2 CHEMISTRY − + H 3 O + CO 2 + 2H 2 O ⇌ HCO 3 (R1) 2H 2 O ⇌ OH − + H 3 O + (R2) − + H 2 O ⇌ CO 3 2− + H 3 O + HCO 3 (R3) Carbamate and bicarbamate formation: PZ + CO 2 + H 2 O ⇌ PZCOO − + H 3 O + (R5) PZCOO − + CO 2 + H 2 O ⇌ PZ COO − 2 + H 3 O + (R6) Protonation: MDEA + H 3 O + ⇌ MDEAH + + H 2 O (R4) Protonations: PZ + H 3 O + ⇌ PZH + + H 2 O (R7) PZCOO − + H 3 O + ⇌ H + PZCOO − + H 2 O (R8)

  16. which protonation will prevail? protonation reactions are the only step where the two absorbents may interfere 𝐿 𝑓𝑟,4 𝐷 𝑁𝐸𝐹𝐵 𝐿 𝑓𝑟,7 𝐷 𝑄𝑎 𝑔 𝑁𝐸𝐹𝐵 = 1 + 𝐿 𝑓𝑟,4 𝐷 𝑁𝐸𝐹𝐵 𝐿 𝑓𝑟,7 𝐷 𝑄𝑎 R4 will prevail over R7 with the result of freeing PZ, which become available for more CO 2 absorption

  17. SIMPLIFIED MDEA + PZ + CO 2 CHEMISTRY − + H 3 O + CO 2 + 2H 2 O ⇌ HCO 3 (R1) 2H 2 O ⇌ OH − + H 3 O + (R2) − + H 2 O ⇌ CO 3 2− + H 3 O + HCO 3 (R3) Carbamate and dicarbamate formation: PZ + CO 2 + H 2 O ⇌ PZCOO − + H 3 O + (R5) PZCOO − + CO 2 + H 2 O ⇌ PZ COO − 2 + H 3 O + (R6) Protonation: MDEA + H 3 O + ⇌ MDEAH + + H 2 O (R4) Protonations: PZ + H 3 O + ⇌ PZH + + H 2 O (R7) PZCOO − + H 3 O + ⇌ H + PZCOO − + H 2 O (R8)

  18. bit of modelling … we use the classical film theory 𝑞 𝐷𝑃2 𝐾 𝐷𝑃2 = 𝑙 𝑁 + 𝐼 1 𝐹𝑙 𝑀

  19. bit of modelling… in order to estimate E 𝜖 2 𝐷 𝑘 𝜖𝑦 2 + 𝑠 𝐸 𝑗𝑘 = 0 𝑘 𝑗 (with the pseudo-steady-state-hypothesis a reasonable assumption) At x =0 (membrane-liquid interface) 𝜖𝐷 𝑘 𝜖𝑦 = 0 for every component j excluding CO 2 for which 𝑞 𝐷𝑃2,𝑁 𝐷 𝐷𝑃2 = 𝐼 At x =δ (liquid film -liquid bulk interface) 𝐷 𝑘 = 𝐷 𝑘,𝑐 valid for any components.

  20. bit of modelling … ( all necessary data from literature, no fitting parameters)

  21. CONCLUSIONS • Observed behavior of the MDEA+PZ absorbing mixtures can be explained without the need to introduce «exotic» steps • «Shuttle» mechanism can also be discarded • Rather than a -MDEA, MDEA+PZ mixtures should be named e -PZ

  22. PIPERAZINE AND METHYLDIETHANOLAMINE INTERRELATIONSHIPS IN CO 2 ABSORPTION BY AQUEOUS AMINE MIXTURES Camilla Costa 1 , Renzo Di Felice 2 , Paolo Moretti 1 , Maddalena Oliva 1 , Rouzbeh Ramezani 2 1 Dipartimento di Chimica e Chimica Industriale, Università di Genova, Genova, Italy 2 Dipartimento di Ingegneria Civile Chimica ed Ambientale, Università di Genova, Genova, Italy renzo.difelice@unige.it www.react.dicca.unige.it

More recommend