pico second resolution timing measurements
play

Pico-second resolution timing measurements Chiara Nociforo GSI - PowerPoint PPT Presentation

Pico-second resolution timing measurements Chiara Nociforo GSI Helmholtzzentrum fr Schwerionenforschung Darmstadt - Germany NUSPIN 2017 GSI 2017 June 26-29 Contents Introduction to the Super-FRS at FAIR: RIB production and


  1. Pico-second resolution timing measurements Chiara Nociforo GSI Helmholtzzentrum für Schwerionenforschung Darmstadt - Germany NUSPIN 2017 – GSI – 2017 June 26-29

  2. Contents � Introduction to the Super-FRS at FAIR: RIB production and separation method � In-flight particle identification (PID) of relativistic heavy ions at Super-FRS: ToF requirements & developments � In-beam tests of focal plane ToF detector prototypes: • diamond (pcCVD) & silicon material properties • electronics role • irradiation and damages C. Nociforo, NUSPIN 2017

  3. The NUSTAR facility at FAIR Future facility GSI today Primary Beams � 5x10 11 238 U 28+ (pulsed) 3.5x10 11 238 U 28+ (DC) @1.5 GeV/u � factor 100 in intensity over present Super-FRS Secondary Beams � broad range of RIBs up to 1-2 GeV/u � up to factor 10000 in intensity over present C. Nociforo, NUSPIN 2017

  4. In-flight PID atomic number f ( ) ← − = β Z dE dx Z / , B ρ – ToF – ∆ E B ρ Z ≠ Q charge state = A Q / γβ m method u T mass number, T KE kinetic energy = KE A ( ) γ − m 1 u 2 A = ToF = L β c Q A / Q 3 Detectors C. Nociforo, NUSPIN 2017

  5. Super-FRS layout Tracking detectors Tracking detectors Intensity 10 11 /s C. Nociforo, NUSPIN 2017

  6. Super-FRS layout ToF detector (start) ToF detector (stop) Intensity 10 11 /s C. Nociforo, NUSPIN 2017

  7. Super-FRS layout ∆ ∆ ∆ ∆ E detector Intensity 10 11 /s C. Nociforo, NUSPIN 2017

  8. Requirements on A/q separation � Clean full isotope identification on event-by-event basis Monte Carlo simulations (MOCADI) yields σ A /A = 0.7‰ not scaled σ ToF = 30 ps 235 U 236 U 237 U σ σ σ x = 0.5 mm, σ σ σ σ σ t = 20 ps β = 0.8, L = 55 m C. Nociforo, NUSPIN 2017

  9. ToF detector requirements � homogeneous and large-area material (total 70000 mm 2 ) � start/stop fast (triggering) signals → ToF silicon/diamond strip detectors arranged in planar geometry − total channels (strips): 1400 chs − timing resolution (full): σ t < 35 ps, σ t = 20 ps for U − rate capability: 0.5 kHz/mm 2 , < 15 kHz/strip − activity: < 1 kGy/year − FEE-sensor distance: > 550 mm − readout: FPGA, e-link interface − full remote control − timestamping 50x50 mm 2 Si strip prototype C. Nociforo, NUSPIN 2017

  10. Silicon time properties Si samples 197 Au @750MeV/u by V. Eremin � matched to Si-strip capacity (St. Petersburg) ( ρ = 10 kOhm cm) � digital waveform sampled (2GHz bandwidth scope) 500 ps � time jitter ~ 20 ps 238 U @350MeV/u σ t = 28 ps 25 ps C. Nociforo, NUSPIN 2017

  11. Diamond time properties 238 U @350MeV/u pcCVD -DD 10x10x0.2 1 mm 3 by GSI-DL rise time=223ps σ t ~24ps � digital waveform sampled (20 GS/s scope) � small charge collection Q=2.46pC C. Nociforo, NUSPIN 2017

  12. ToF measurements at FRS 2 x pcCVD -DD 20x20x0.3 mm 3 16-strip design: (1x18) mm 2 each (0.15 • BIAS mm gap), C = 4.3 pF/strip THR • metallization: 50nm/100nm (Cr/Au) by photolithography (GSI-DL) +5V • PADI7 4x4chs 197 Au@900MeV/u V = -200 V V = -200 V THR = -5 V THR = -5 V Beam profile σ σ TOF = 45.1 ± 1.4 ps σ σ TOF = 45.1 ± 1.4 ps σ σ σ σ on diamonds F. Schirru et al., J. Phys. D: Appl. Phys. 49 (2016) 215105 C. Nociforo, NUSPIN 2017

  13. ToF measurements at FRS 2 x pcCVD -DD 20x20x0.3 mm 3 16-strip design: (1x18) mm 2 each (0.15 • BIAS mm gap), C = 4.3 pF/strip THR • metallization: 50nm/100nm (Cr/Au) by photolithography (GSI-DL) +5V • PADI7 4x4chs 197 Au@900MeV/u V = -200 V V = -200 V THR = -5 V THR = -5 V • no rate dependence observed F. Schirru et al., J. Phys. D: Appl. Phys. 49 (2016) 215105 C. Nociforo, NUSPIN 2017

  14. σ DD contribution S2-S4 Detector resolution σ DD1 ~ 25 ps 2 - σ j 2 = √ (45.1) 2 – (15) 2 = 42.5 ps σ DD = √ σ ToF σ DD2 ~ 35 ps Measured VFTX/PADI intrinsic time resolution: 15 ps ( σ ) � PADI ASIC 180 nm CMOS � VFTX (28 chs) VME FPGA TDC - rise time < 500 ps - LVDS inputs - 30 fC <Q< 2000 fC - 200 MHz clock (external & - σ tE < 15 ps internal) - LVDS digital outputs - σ t < 10 ps - 350 MHz bandwidth - gain 250 (M. Ciobanu et al., IEEE (https://www.gsi.de/fileadmin/EE/Module/Dokumente/vftx1_8.pdf) Transactions on Nuclear Science, vol.58, no. 4, p. 2073, Aug. 2011) C. Nociforo, NUSPIN 2017

  15. Silicon in-beam tests detectors cooled ( T= -20°C) and overbiased PADI6 • for good timing ToF between one strip and small pad • measured by PADI6 + VFTX 197 Au@900MeV/u pad 1x1x0.3 mm 3 σ TOF = 18 ps σ σ TOF = 18 ps σ σ σ σ σ after ToT correction V. Eremin et al., NIM A 796 (2015) 158 C. Nociforo, NUSPIN 2017

  16. TDC architecture in 65 nm C. Nociforo, NUSPIN 2017

  17. Comparison diamond vs scintillator Calibration of SEM monitor vs scCVD-DD 3.23x3.23x0.16 mm 3 and pcCVD-DD 18x18x0.3 mm 3 tested with broadband current sensitive amplifiers (DBA (P. Moritz, GSI), PA-20 (M. Jastrzab, IFJ Cracow) 12 C@62MeV/u / 3 • collimator Ø 2.5mm • SEM monitor Ø 100 mm plastics SCI 100x100x0.25 mm 3 • C. Nociforo, NUSPIN 2017

  18. Irradiation tests at LNS-INFN, 2016 Series of irradiation of 10 7 12 C/mm 2 s followed by data taking via digital scope (10 GS/s) at low rate to monitor the time resolution and CCE of pcCVD-DD (10x10x0.3 mm 3 ) and scCVD-DD (2x2x0.09 mm 3 ) 12 C@62MeV/u ≈ 3.3 MGy Q 4 Q 2 collimated beam Q 3 Q 1 E loss ≈ 36 MeV (comparable to 40 Ar@2GeV/u) • discrepancy due to pile-up in diamond signals C. Nociforo, NUSPIN 2017

  19. Digital waveform analysis (pcCVD-DD) 12 C@62MeV/u V = 300 V V = 300 V THR = -30 mV THR = -30 mV shared charge between Q i • no degradation of the signal observed at the end of the irradiation C. Nociforo et al., EPJ Web Conf. 117 (2016) 10007 C. Nociforo, NUSPIN 2017

  20. Digital waveform analysis (pcCVD-DD) 12 C@62MeV/u V = 300 V V = 300 V ToF: Q 4 pcCVD-DD & scCVD-DD THR = -30 mV THR = -30 mV Catania (Run 2) - pcCVD, +300 V, Quad 4 5000 PT01N (0hr) PT18N (40hr) 4000 Normalized Counts 3000 2000 σ (PT01) = 68 ps 1000 σ (PT18) = 63 ps 0 0 10 20 30 40 50 ToF (100 ps) • no change in the measured ToF at the end of the irradiation C. Nociforo et al., EPJ Web Conf. 117 (2016) 10007 C. Nociforo, NUSPIN 2017

  21. Digital waveform analysis (scCVD-DD) 12 C@62MeV/u V = 100 V V = 100 V Thr = -30 mV Thr = -30 mV Catania (Run 2) - scCVD, +100 V Catania (Run 2) - scCVD, +100 V 1400 2000 1200 PT01N (0hr) PT01N (0hr) PT18N (40hr) PT18N (40hr) 1000 Normalized Counts Normalized Counts 1500 800 600 1000 400 500 200 0 0 0 20 40 60 80 100 120 140 160 180 200 220 0 200 400 600 800 1000 Slope (mV/100 ps) Amplitude (mV) x scale to be multiplied by 10 and dimensions written as mV/ns • shift observed after about 12 hours of irradiation, kept constant until the end C. Nociforo, NUSPIN 2017

  22. Damage effects (scCVD-DD) 10 ns longer decay time and 50 mV 12 C@62MeV/u lower amplitude, appearing during irradiation LED thr • final amplitude distribution is well above threshold C. Nociforo, NUSPIN 2017

  23. Summary To obtain a clean PID at Super-FRS: � ToF detectors with timing resolution σ t ~ 20 ps are required → in-beam tests of silicon and diamond strip detectors 0.3 mm thick ( 197 Au@900 MeV/u) show that by using pico-seconds electronics the required time performance is achievable → irradiation test results ( 12 C@62MeV/u) indicate pcCVD diamonds as superior material for application in high radiation level environment. C. Nociforo, NUSPIN 2017

  24. Acknowledgment J. Frühauf, C. Karagiannis, A. Kratz, M. Kiš, O. Kiselev, N. Kurz, F. Schirru, M. Träger, R. Visinka GSI, Darmstadt, Germany M. Ciobanu Horia Hulubei National Institute for Physics and Nuclear Engineering, Magurele- Bucharest, Romania S. Schlemme TU Darmstadt, Germany V. Eremin Ioffe Physical-Technical Institute, Russian Academy of Science, St. Petersburg, Russia M. Jastrzab Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland C. Nociforo, NUSPIN 2017

Recommend


More recommend