photoproduction of eta meson in nuclear target
play

Photoproduction of Eta Meson in Nuclear Target T. Kinoshita, at al, - PowerPoint PPT Presentation

Photoproduction of Eta Meson in Nuclear Target T. Kinoshita, at al, Phys. Lett. B639, 429 (2006) T. Maruyama S. Chiba, P.T.P. 111, 229 (2004) T. Yorita, et al. Phys. Lett. B 76, 226 (2000) 1 Introduction QMD Results and Recent


  1. Photoproduction of Eta Meson in Nuclear Target T. Kinoshita, at al, Phys. Lett. B639, 429 (2006) T. Maruyama , S. Chiba, P.T.P. 111, 229 (2004) T. Yorita, et al. Phys. Lett. B 76, 226 (2000) § 1 Introduction QMD Results and Recent Experimental Data § 2 Model Relativistic Mean-Field Approach § 3 Results § 4 Summary and Conclusion

  2. § 1 Introduction Reactions with Lepton : Probes Electron Scattering & Photo Reaction Purpose : Information of Nuclear Curren t Γ photon absorption process Information ⇒ Pure but Insufficient Amount Inclusive Reaction Exclusive Reaction ⇒ Large Amount but Impure → Final State Interaction Collisional Processes of Observed Particles Semi-Classical Numerical Simulation BUU, QMD

  3. Quantum Molecular Dynamics ( QMD ) 1 ) Single Events Semi-Classica Numerical Simulations 2 ) Classical Motions of Particles 3 ) Two Bosy Collionss ← Experimental Data Inelastic Collisions : N +N⇔ N + Δ ( N * ) Particle Decays : Δ ( N * )⇔ N + π 4) Describing Multi-Step Processes 5) Possible to Give Coincident Observables ( p, π ) 6) Applicable to various Kinds of Reaction Photoreactions starting simulations at gamma-ray absorptted

  4. Photoreaction Total photoabsorption on nuclei Total Photoabsorption Cross-Section ⇒ N * - Resonance Peaks disappear Medium Properties for N* Resonance ? Widths of D13(1520) and F15(1680) are broadened? How about other S11(1535) ?

  5. § 2 QMD Model QMD = A-Body Classical Motion + 2-Body Collisions 1 ( ) / 4 x r L 2 i p x e ( 1 , , ) ( ), ( ) x x x x i i 1) Wave Function A i i i 2 3 / 2 ( 2 ) L i 2) Classical Motion Parts (Mean-Field Parts) H H dr dp QMD QMD i , i , ( , ; , ) | | H r r p p H 1 1 QMD A A dt p dt r i i Elastic Collisons 3) 2-Body Collisions + Pauli Blocking N + N ⇔ N + N Inelastic Collisons N + N ⇔ N + R (R + R) 4 ) Statistical Decay

  6. Initial Distribution 2 Body Col & Isobar Decay Elastic Collisions A nucleon absorps photon N + N ↔ N+R, R+R γ + N → Δ, N* R ↔ N + π(η) Classical Motions by mean-field H H dr dp Statistical Decay QMD QMD i i , dt p dt r i i Final Distribution

  7. 0 . 67 n p

  8. Analysis of QMD for 12 C T.Yorita, et al., Phys. Lett.B476 (2000) 226 210 MeV 0 150 MeV 0 KEK-Tanashi 63 Cu 27 Al 12 C

  9. § 3 RMF approach T.Maruyama & S. Chiba, PTP 111 (2004) 229 RMF approach : two kinds of Dirac Mean-Fileds U s : attractive Scalar Fields U μ : repulsive Vector Fields In-medium Properties for Nucleon are quite different from that in vacuum If in-medium corrections for N* are not so big, …. ? N* (vacuum) → N (medium) : big medium effects are seen ? unbound bound ( *) ( ) , 0 U N c U N s N*– mean-fields

  10. N*-width in Medium : Function of Phase Space p s p eff 2 2 1 ( ) k k k dp n p i i i 2 p E R p p * 2 ( ) s p q eff

  11. BUU calculations J. Lehr, M. Post, U. Mosel, Phys. Rev. C68 (2003) 044601 non-rela. calculation with Momentum-Dependent Potential N* ( high p weak pot. ) N ( low p, deep pot. )

  12. §4 Q M D C a l c u l a t i o n s s U eff N N*(unbound) → N (bound) Peak shift

  13. Jaegle et al., Proc. of NSTAR05 Exp. : γ + D → πη a new production process in high energy photon πη

  14. Comparison with QMD ( *) ( ) U N U N

  15. § 5 Summary Numerical Simulation Approaches fot Nuclear Reaction (BUU, QMD) are useful for study of Photoreaction Analyzing Final State Interaction γ + C, Cu → η + X No dramatic results Elementary Process γ +N → η + X , γ +N → πη +X U (S11) ≈ U (N) Future η + Nucleus Bound State Applying QMD to neutrino Reaction In-Medium Form Factor M.K.Cheoun, K.C.Kim, K.Saito, T.Kajino, K.Tsushima, T.M., PRC, #065502 (13) M.K. Cheoun, K.S.Kim, H. Kim,W.Y. So, T.M.and T.Kajino, J.Phys.G (2014) in press

  16. Neutrino Reaction ( 500 MeV ) C Neutra Current Contribution Exp: MiniNOONE M.K. Cheoun,et al. J.Phys.G (14) in press

  17. Collision Broadening: L.A.Condratyuk, N.P. A579 (1994) 453 Γ(In -Med.) = Γ(vac) + Γ coll N* + N → N + N

  18. Pionphotoproduction and N*

  19. Widthes of D 13 (1520) and F 15 (1680) are broadened? How about other N* Isobars? D 13 (1520) and F 15 (1680) Decay Processes are too Complicated * N N N N S 11 (1535) Decay Process is Simple * N N N KEK-Tanashi Experimets : γ + A → η+ X Information of S11 Isobar Resonances QMD Analysis (Yorita et al.) Theory ⇔ Ecperimet Width Γ(S 11 ) = Elementary Γ(S 11 ) = 150MeV Not Good 150MeV Width Γ(S 11 ) = 212MeV Good

Recommend


More recommend