phill litchfield
play

-Phill Litchfield 2017/06/21 A short history of the Kamioka program - PowerPoint PPT Presentation

-Phill Litchfield 2017/06/21 A short history of the Kamioka program Neutrino oscillation physics & T2K Hyper-K and the Korean detector 2017/06/21 Late 70s : Grand Unified Theories are very popular Started with (5) &


  1. -Phill Litchfield 2017/06/21

  2. A short history of the Kamioka program Neutrino oscillation physics & T2K Hyper-K and the Korean detector 2017/06/21

  3. Late 70โ€™s : Grand Unified Theories are very popular โ€ข Started with ๐‘‡๐‘‰(5) & ๐‘‡๐‘ƒ 10 [1974] โ€ข Predict `Leptoquark` operators that conserve ๐ถ โˆ’ ๐‘€ , but not ๐ถ ๐‘ฃ + ๐‘ฃ โ†’ เดค d + e + gives rise to ๐’’ โ†’ ๐† ๐Ÿ + ๐’‡ + โ€œProton decayโ€ Predicted lifetime of the proton 10 30 ~ 10 35 years. ๐ต = 6 ร— 10 24 protons 18g H 2 O = 10๐‘‚ Therefore a few kilotonnes (gigagram) of material would be enough to start testing the theoriesโ€ฆ Early 80โ€™s : Experiments designed and built to test these predictions

  4. A few tonnes is still a lot of material to instrument. Practically you need: โ€ข Something cheap and easy to maintain. โ€ข That your source is also the detector โ€ข Surface instrumentation ( ๐‘€ 2 instead of ๐‘€ 3 ) Suitable technology: Water-Cherenkov Water is cheap, and (if purified) Conical radiation pattern can be very transparent. intersects surface to make a ring โ€ข Direction from centre of ring cos๐œ„ = 1 โ€ข Energy from range (thickness ๐‘œ๐›พ of ring) โ€ข Works nicely for low mass ๐‘œ โ‰ƒ 1.4 particles. โˆด ๐œ„ ๐›พ=1 โˆผ 43ยฐ

  5. 1982 ~ 1983: The โ€œ Kamioka Nucleon Decay Experimentโ€ 16.0m was constructed in Mozumi mine near Kamioka town in central Japan to look for proton decay. 15.6m ๐‘ž โ†’ ๐œŒ 0 + ๐’‡ + ๐‘ž โ†’ โ†ช ๐œน + ๐œน Cherenkov light collected by 1k specially-designed 20 " PMTs. โ€ข Large PMTs meant more of the tank surface was sensitive to photons. โ€ข More photocoverage means better energy resolution.

  6. 1985: The Kamiokande detector was upgraded to enable it to see solar neutrinos. Now also โ€œ Kamioka Neutrino Detection Experimentโ€ โ€ข Needed low threshold (few MeV). โ€ข Outer detector (OD) added to veto entering particles. โ€ข The water is highly purified and recycled to remove Radon (low-energy B/G.) This work paid off spectacularly (& luckily): 1987: Neutrinos are detected from SN1987A in the LMC. โ€ข (First) Nobel Prize for Kamioka neutrino program in 2012. โ€ข Supernova close enough so see with neutrinos are expected ~30 yearsโ€ฆ <hint> <hint>

  7. 1990โ€™s: โ€˜Oscillationโ€™ phenomenon suspected to be explanation of deficit seen in both solar neutrinos and atmospheric neutrinos. โ€ข A larger experiment could investigate โ€˜shapeโ€™ predictions of oscillation mechanism with much better statistics. โ€ข Improvements to purification meant water is usefully transparent for longer distances. Build Super- Kamiokande! โ€ข Also incorporate things learnt (e.g. better OD) and upgrade readout technology 39.3m 41.4m

  8. By 2000, experiments with atmospheric neutrinos were showing some limitations: โ€ข Neutrino flux estimates rely on detailed simulation of the hadronic cascades, over several orders of magnitude in energy. โ€ข Small errors in reconstructing the neutrino direction result in big changes in guessing the origin point. Neutrinos from accelerators are much better! Even if you donโ€™t understand the source fully: โ€ข You know where it is. โ€ข You can measure it. K2K was the first experiment to try this approach to measuring oscillations, is its (currently running) successor. The question is, where do we go next?

  9. A short history of the Kamioka program Neutrino oscillation physics & T2K Hyper-K and the Korean detector 2017/06/21

  10. Neutrinos are โ€˜bornโ€™ in weak processes. โ„“ โ€ข They are defined by the associated charge lepton. ๐‘‹ ๐œ‰ โ„“ Also detected by weak interactions ๏€ข well defined flavour state. 2 ๐œ‰ ๐›พ ๐‘ˆ๐‘—๐‘›๐‘“ ๐‘ž๐‘๐‘ก๐‘ก๐‘“๐‘ก ๐œ‰ ๐›ฝ So the oscillation probability is: ๐‘„ ฮฝ ๐›ฝ โ†’ ฮฝ ๐›พ = The passage of (space-)time is through the usual operator: ๐‘“ โˆ’i เท  ๐น๐‘ขโˆ’เท ๐’’โˆ™๐’š In vacuum the eigenstates of this operator are mass eigenstates ๐‘› ๐‘— Therefore transform flavour into mass states and back: 2 โ€  ๐‘“ โˆ’i ๐น ๐‘— ๐‘ขโˆ’๐’’ ๐’‹ โˆ™๐’š ๐‘‰ ๐›ฝ๐‘— โ€  ๐œ‰ ๐›ฝ ๐‘„ ฮฝ ๐›ฝ โ†’ ฮฝ ๐›พ = ๐œ‰ ๐›พ ๐‘‰ ๐›พ๐‘—

  11. 2 โ€  ๐‘“ โˆ’i ๐น ๐‘— ๐‘ขโˆ’๐’’ ๐’‹ โˆ™๐’š ๐‘‰ ๐›ฝ๐‘— โ€  ๐œ‰ ๐›ฝ ๐‘„ ฮฝ ๐›ฝ โ†’ ฮฝ ๐›พ = ๐œ‰ ๐›พ ๐‘‰ ๐›พ๐‘— The phase evolution can be expanded in two parts: 1. Global phase advance that disappears in the modulus Relative phase between the different ๐œ‰ ๐‘— . For ultra-relativistic 2. neutrinos this is: 2 โˆ’ ๐‘› ๐‘˜ 2 ๐‘€ 2 ๐‘€ ๐‘› ๐‘— ฮ”๐‘› ๐‘—๐‘˜ = 4๐น 4๐น 100% 0% 50% 50% 0% 100%

  12. 2 โ€  ๐‘“ โˆ’i ๐น ๐‘— ๐‘ขโˆ’๐’’ ๐’‹ โˆ™๐’š ๐‘‰ ๐›ฝ๐‘— โ€  ๐œ‰ ๐›ฝ ๐‘„ ฮฝ ๐›ฝ โ†’ ฮฝ ๐›พ = ๐œ‰ ๐›พ ๐‘‰ ๐›พ๐‘— Upshot: The phase evolution can be expanded in two parts: Oscillations occur based on 2 independent mass 2 splittings, 2 ๐‘€ > 4๐น . provided the propagation distance satisfies ๐›ฆ๐‘› ๐‘˜๐‘— 1. Global phase advance that disappears in the modulus Relative phase between the different ๐œ‰ ๐‘— . For ultra-relativistic 2. neutrinos this is: For 3 generations, the most general mixing matrix is complex 2 โˆ’ ๐‘› ๐‘— 2 ๐‘€ 2 ๐‘€ ๐‘› ๐‘˜ ฮ”๐‘› ๐‘˜๐‘— and has 4 real parameters. = 4๐น 4๐น 100% 0% 50% 50% 0% 100%

  13. With 3 generations and non-zero mass, CKM- style mixing is natural: ๐œ‰ ๐‘“ ๐‘‰ ๐‘“1 ๐‘‰ ๐‘“2 ๐‘ฝ ๐’‡๐Ÿ’ ๐œ‰ 1 ๐œ‰ ๐œˆ ๐œ‰ 2 ๐‘‰ ๐œˆ1 ๐‘‰ ๐œˆ2 ๐‘‰ ๐œˆ3 = ๐œ‰ ๐œ ๐œ‰ 3 ๐‘‰ ๐œ1 ๐‘‰ ๐œ2 ๐‘‰ ๐œ3 0 1 6 1 3 1 2 1 2 3 เต— เต— เต— เต— More surprising: 8 elements are large โ€ข ๐‘ฝ ๐’‡๐Ÿ’ is significant as the smallest element, and the last to be measured (or inferred). ๐œ‰ ๐‘“ ๐œ‰ ๐œˆ ๐œ‰ ๐œ Important to note: KM-mechanism CPv requires that all elements are non-zero

  14. 2 is known is known from solar Sign of ฮ”๐‘› โŠ™ ๐œ‰ ๐‘“ ๐œ‰ ๐œˆ ๐œ‰ ๐œ experiments

  15. The mixing matrix is commonly parameterised as the product of two rotations and a unitary transformation. Writing s ๐‘—๐‘˜ = sin๐œ„ ๐‘—๐‘˜ , and c ๐‘—๐‘˜ = cos๐œ„ ๐‘—๐‘˜ : s 13 e i๐œ€ 1 0 0 c 12 s 12 0 c 13 0 0 c 23 s 23 โˆ’s 12 c 12 0 0 1 0 โˆ’s 13 e โˆ’i๐œ€ 0 โˆ’s 23 c 23 0 0 1 0 c 13 This choice is convenient as the original solar and atmospheric disappearance signals could be approximated as functions of ๐œพ ๐Ÿ๐Ÿ‘ and ๐œพ ๐Ÿ‘๐Ÿ’ , respectively. Essentially this was a careful (lucky?) choice of variables S.T. the third angle ๐œพ ๐Ÿ๐Ÿ’ describes the magnitude of the smallest element: ๐‘‰ ๐‘“3 = sin ๐œ„ 13 ๐‘“ โˆ’๐‘—๐œ€

  16. ๐œ‰ ๐œˆ โ†’ ๐œ‰ ๐‘“ The ฮฝ ๐‘“ appearance probability can be written approximately as a sum of 2 โ‰ˆ 2 ฮค ฮค terms quadratic in the small parameters ๐›ฝ = โˆ†๐‘› 21 โˆ†๐‘› 31 ยฑ1 32 , and sin 2๐œ„ 13 : ๐›ฝ๐›ฝ ๐›ฝ 2 sin 2 ๐ตโˆ† sin 2 1โˆ’๐ต โˆ† ๐‘„ ฮฝ ๐œˆ โ†’ ฮฝ ๐‘“ โ‰ˆ ๐‘ˆ ๐œ„๐œ„ sin 2 2๐œ„ 13 + ๐‘ˆ 1โˆ’๐ต 2 ๐ต 2 sin 1โˆ’๐ต โˆ† sin ๐ตโˆ† + ๐‘ˆ ๐›ฝ๐œ„ ๐›ฝ sin 2๐œ„ 13 cos ๐œ€ + โˆ† 1โˆ’๐ต ๐ต where ๐›ฝ๐›ฝ = cos 2 ๐œ„ 23 sin 2 2๐œ„ 12 , ๐‘ˆ ๐œ„๐œ„ = sin 2 ๐œ„ 23 , ๐‘ˆ ๐‘ˆ ๐›ฝ๐œ„ = cos ๐œ„ 13 sin 2๐œ„ 12 sin 2๐œ„ 23 ๐ต = 2 2 2๐ป ๐บ ๐‘œ ๐‘“ ๐น โˆ†๐‘› 31 เต— is the 2 ๐‘€ and โˆ†= โˆ†๐‘› 31 ~ 2๐‘œโˆ’1 ๐œŒ at 1 st osc. max. matter density parameter. 4๐น 2 Here, ๐ต โ‰ƒ ๐น/10GeV

  17. Uses the existing Super-K detector and J-PARC high-power proton facility on the east cost of Japan. โ€ข Near detector suite โ€œND280โ€ characterises neutrino beam Main ring Primary beamline Decay volume Neutrinos

  18. T2K is the first experiment to have its detectors off-axis Relativistic kinematics ๏€ข at a small angle to the beam axis, neutrino energy is insensitive to parent pion energy. T2K Neutrino flux /arb.unit On-axis 3.0 ยฐ 2.5 ยฐ Off-axis 2.0 o 2.0 ยฐ Off-axis 2.5 o Off-axis 3.0 o Gives slightly narrower flux peak, and drastically reduces high 0 0 0.5 1 1.5 2 2.5 3 3.5 4 energy tail . Neutrino energy /GeV โ€ข Ideal for ฮฝ e appearance (much reduced NC BG)

  19. The oscillation probability is measured as a function of energy, and typically has peaks spaced at 1 ๐น , with a tail down to no oscillation at high energies. 4 th 3 rd 2 nd 1 st Flux peak

  20. ๐”๐Ÿ‘๐‹ For ฮ”~ ๐œŒ 2 , we know the magnitude of the second term is small ( ~ 10 โˆ’3 ) so any signal above that is evidence that sin 2 2๐œ„ 13 > 0 , regardless of the value of the other unknowns . ๐›ฝ๐›ฝ ๐›ฝ 2 sin 2 ๐ตโˆ† sin 2 1โˆ’๐ต โˆ† ๐‘„ ฮฝ ๐œˆ โ†’ ฮฝ ๐‘“ โ‰ˆ ๐‘ˆ ๐œ„๐œ„ sin 2 2๐œ„ 13 + ๐‘ˆ 1โˆ’๐ต 2 ๐ต 2 sin 1โˆ’๐ต โˆ† sin ๐ตโˆ† + ๐‘ˆ ๐›ฝ๐œ„ ๐›ฝ sin 2๐œ„ 13 cos ๐œ€ + โˆ† 1โˆ’๐ต ๐ต It turned out that ๐‘ธ ๐ƒ ๐‚ โ†’ ๐ƒ ๐’‡ ~ ๐Ÿ. ๐Ÿ , slightly above previous limit. โ€ข Easy to see, requiring <10% of T2K design sensitivity. โ€ข Also means we can essentially ignore the second term.

  21. ๐’๐Ÿ๐›๐๐ฎ๐ฉ๐ฌ ๐Ÿ๐ฒ๐ช๐Ÿ๐ฌ๐ฃ๐ง๐Ÿ๐จ๐ฎ๐ญ At about the same time, new reactor RENO FD experiments (RENO, Double Chooz & Daya bay) independently measured sin 2 2๐œ„ 13 via disappearance: ๐‘„ ฮฝ ๐‘“ โ†’ ฮฝ ๐‘“ โ‰ˆ 1 โˆ’ sin 2 2๐œ„ 13 sin 2 โˆ† 2017: This is now the most precise input to the appearance prob. ๐‘„ ฮฝ ๐œˆ โ†’ ฮฝ ๐‘“ Double Chooz RENO EH2 Daya Bay EH1 Daya Bay (Ling Ao)

Recommend


More recommend