phase transitions gravitational waves and composite dark
play

Phase Transitions, Gravitational Waves, and Composite Dark Matter - PowerPoint PPT Presentation

Phase Transitions, Gravitational Waves, and Composite Dark Matter Pedro Schwaller (DESY) Lattice for BSM Physics 2016 Argonne National Laboratory April 22, 2016 2 Outline DM from confining SU(N) First order Phase Transitions PT


  1. Phase Transitions, Gravitational Waves, and Composite Dark Matter Pedro Schwaller (DESY) Lattice for BSM Physics 2016 Argonne National Laboratory April 22, 2016

  2. 2 Outline • DM from confining SU(N) • First order Phase Transitions • PT dynamics from lattice? • Gravitational Waves from FOPT • Detection - Ground, Space, PTA

  3. 3 Composite DM • Alternative to elementary WIMP models • Phenomenologically viable, “generic” possibility in presence of hidden sectors • Some nice features: • DM stability, mass scale • Symmetric component annihilation for ADM • Self-interactions

  4. 
 4 Dark QCD • Models I’m interested in here • Nonabelian SU(N) dark sector, confinement scale Λ d • light/massless flavours n f n f > 0 n f = 0 Glueball DM 
 Dark Baryons 
 or Dark Pions PT from center symmetry restoration Chiral Symmetry Breaking

  5. The Dark Phase Transition

  6. 6 Phase Transition • SU(N) dark sectors well motivated • Confinement/chiral symmetry breaking phase transition at scale Λ d ‣ DM: (MeV - 100 TeV) Λ d ∼ M DM ‣ Naturalness: Λ d ∼ few × Λ QCD • First order PT in large class of models • Still possible if LHC finds no new physics

  7. 7 QCD Phase Diagram • Strong First Order W e a k C r SM m s o s s - o v e r Strong First Order 0 0 • m u , d

  8. 8 Phase Diagram II Glueball DM • Strong First Order W Fraternal e a k C r SM m s o Twin Higgs s s - o v e r Dark QCD SIMP models Strong First Order 0 0 • m u , d

  9. 9 SU(N) - PT • Consider with massless flavours SU ( N d ) n f • PT is first order for ‣ , n f = 0 Svetitsky, Yaffe, 1982 N d ≥ 3 M. Panero, 2009 ‣ , 3 ≤ n f < 4 N d N d ≥ 3 Pisarski, Wilczek, 1983 • Not for: ‣ (no global symmetry, no PT) n f = 1 ‣ (not yet known) n f = 2

  10. 10 SU(N) - PT 2 • One more parameter: angle Θ • Effect on PT not well studied M. Anber, 2013 Garcia-Garcia, Lasenby, March-Russell, 2015 • dependence of PT strength? N d , n f Panero, 2009 • Finite density/chemical potentials? 10 0 19 ‣ QCD FOPT? Current NANOGrav sensitivity 22 PTA 2020 10 4 0.01 1 100 10 4 Schwarz, Stuke, 2009 10 − 5 h 2 Ω (f) ‣ GW signal: LISA Caprini, Durrer, Siemens, 2009 10 − 10 10 − 15 10 − 10 10 − 8 10 − 6 10 − 4 10 − 2 f [Hz]

  11. 11 Questions for Lattice • Dynamics of PT known from lattice? • Latent heat • Bubble nucleation rate I’d be happy to collaborate! • Dependence on N d , n f • theta param, chem. potentials? • At least some of this is known AFAIK • For Cosmology: relevant T < T C

  12. Gravitational Wave spectra from FOPT

  13. 13 Cosmological Phase Transitions • Early Universe in symmetric phase (e.g. unbroken electroweak symmetry) T > T c T < T c T < T c Second 
 First 
 order order

  14. 14 GWs from PTs First order PT ➞ Bubbles nucleate, expand Bubble collisions ➞ Gravitational Waves

  15. 15 Signal is Universal • PT characterised by few parameters: α ≈ Ω vacuum • Latent heat 
 Extensive numerical Ω rad simulations. Recently e.g. Hindmarsh et al: • Bubble wall velocity v Sound wave contributions β • Bubble nucleation rate T ∗ • PT temperature • Three physical contributions • Bubble wall collisions Phenomenological • Turbulence Parameterisations: • Sound waves Caprini et al, 1512.06239

  16. 16 GW signal Bubble Collisions Turbulence 10 - 6 r e l l a m s y l b a b o r p * 10 - 8 h 2 Ω GW 10 - 10 10 - 12 10 - 8 10 - 7 10 - 6 10 - 5 10 - 4 0.001 0.010 f [ Hz ]

  17. 17 Peak Frequency • Redshift: ⇣ g ∗ ⌘ 1 ✓ ◆ f = a ∗ f ∗ T ∗ ⇥ f ∗ = 1 . 59 ⇥ 10 − 7 Hz ⇥ 6 ⇥ H ∗ a 0 H ∗ 80 1 GeV H ∗ PT Temperature q ~ DM Mass • Peak regions: k/ β ≈ (1 − 10) H ◆ ✓ β ⇣ g ∗ ⌘ 1 ✓ ◆ T ∗ peak = 3 . 33 ⇥ 10 − 8 Hz ⇥ f ( B ) 6 80 1 GeV H ∗

  18. 18 Experiments Satellite based NANOGrav 10 - 1 eLISA: 2028/2032 Ground based eLISA old 10 - 4 EPTA SKA LIGO 2016 10 - 7 Ω GW h 2 LIGO 2022 IPTA 10 - 10 * eLISA best case BBO 10 - 13 10 - 9 10 - 7 10 - 5 0.001 0.100 10 f [ Hz ] Pulsar timing arrays Data already available * From A. Petiteau

  19. 19 Composite ADM Composite B-L DM SIMP breaking, Twin Higgs WIMP-y Unitarity Hidden Sectors 0.001 EPTA 10 - 5 SKA IPTA ELISA 10 - 7 ALIA LIGO h 2 W GW LISA 10 - 9 T * = 0.1 GeV 10 - 11 V T * = 300 GeV e DECIGO G 3 T * = 10 TeV 10 - 13 = T * BBO 10 - 15 0.01 1 10 - 10 10 - 8 10 - 6 10 - 4 f @ Hz D

  20. 20 Summary • Symmetry breaking with first order PT ➞ 
 Gravitational Waves! • Signal from composite DM sector could be observable • Interesting tasks for numerical (lattice) simulations • PT dynamics for strongly coupled models • PT non-perturbative sometimes even for weakly coupled models • Simulation of GW signal from PT

  21. 21

  22. 22 GWs as window to dark matter sector • Motivation for (non-abelian) Dark Sectors • Phase Transition of SU(N) Theories • GW Signals from PTRs to ELISA Based on PRL 115 (2015) 18, 181101

  23. 23 Dark Matter We#have#seen#DM#in#the#sky:# But#no#direct#observa7on## LUX# − 44 10 6 8 10 12 − 40 10 − 45 10 − 42 10 − 44 10 1 2 3 10 10 10 m WIMP (GeV/c 2 ) Maybe#DM#is#just#part#of#a#larger#dark#sector## • Example:#Proton#is#massive,#stable,#composite#state# • DM#self#interac7ons#solve#structure#forma7on#problems# • New#signals,#new#search#strategies!#

  24. 24 Composite DM • SU(N) dark sector QCD dark QCD with neutral 
 X d “dark quarks” TeV • Confinement scale asymmetry Λ darkQCD sharing p D , . . . • DM is composite annihilation “dark proton” π D , . . . GeV p , n decay Bai, PS, PRD 89, 2014 π , K , . . . PS, Stolarski, Weiler, JHEP 2015 many other works! Similar setup e.g.: Blennow et al; Cohen et al; Frandsen et al; Reviews: Petraki & Volkas, 2013; Zurek, 2013;

  25. 25 DM Motivation • New mechanisms for relic density, extend mass range: ‣ Asymmetric DM - GeV-TeV scale ‣ Strong Annihilation - 100 TeV scale ‣ SIMP - MeV scale Hochberg, Kuflik, Volansky, Wacker, 2014; + Murayama, 2015 • Advantages of Composite ‣ DM mass scale and stability ‣ Fast annihilation for ADM ‣ Self-interactions for structure formation

  26. 26 GW spectra • Lot of work on GW from 1st order PT See talks by Hindmarsh, Weir • Still difficult to simulate or model for more details • Here in addition: • Transition is non-perturbative • Parameters not known - take an optimistic guess β /H ∗ = 1 − 100 v = 1 κα 1 + α = 0 . 1

Recommend


More recommend