petros papapanagiotou
play

Petros Papapanagiotou Automated Reasoning Lecture 9 What have you - PowerPoint PPT Presentation

Petros Papapanagiotou Automated Reasoning Lecture 9 What have you done so far? Done To Go 2 Learned new things!.. 3 ...and some (more) logic!.. 4 ...and practiced using Isabelle!.. 5 ...but why? 6 Where is the connection...


  1. Petros Papapanagiotou Automated Reasoning Lecture 9

  2. What have you done so far? Done To Go 2

  3. Learned new things!.. 3

  4. ...and some (more) logic!.. 4

  5. ...and practiced using Isabelle!.. 5

  6. ...but why? 6

  7. Where is the connection... ...between these... ...and these? 7

  8. Oops! 8

  9. “LOGICAL” errors! 9

  10. “LOGICAL” solution! 10

  11. “LOGICAL” solution! Formal Verification! 11

  12. Use logic to...  Describe  Specify  Reason  Assist 12

  13. Web Services 13

  14. Web Services 14

  15. Web Services 15

  16. Web Service Description: Inputs Outputs Preconditions Effects Service 16

  17. Web Service Description: IOPEs Service Input Output 17

  18. Web Service Description: IOPEs Service Preconditions Effects 18

  19. Web Service Description: More? Cost! Quality! Service Location! Certification! 19

  20. Web Services Description Language 20

  21. Business Process Execution Language 21

  22. Semantic Web Services: OWL-S 22

  23. Example domain 23

  24. USD to NOK Cm Select to Ski Inch Buyer Select Select Length Model 24

  25. Example domain 25

  26. House Alert Home Settlement Directory Home Criminal Insurance Service Buyer Title Search Estate Agent Contract Mortgage Service Service 26

  27. Web Services Composition User Input Estate Settlement Agent House Alert Buyer Home Contract Directory Service Criminal Service Title Settlement Search or Home Exception Mortgage Insurance Service 27

  28. Requirements  Compose correctly  Handle exceptions  Provide trust 28

  29. We are also...  Offline  Quality-driven  Formal 29

  30. The approach Classical π - Linear calculus Logic Proofs as processes 30

  31. The approach HOL Light Classical π - Theorem Prover Linear calculus Logic Proofs as processes 31

  32. The theory: π -calculus P ::= | 0 null process | x(y).P input | x<y>.P output |( ν x) P local variable | P || P parallel processes | P + P choice 32

  33. The theory: Classical Linear Logic  FOL  CLL ⟦ p ; q ⟧ ⇒ p ⟦ p ; q ⟧ ⇒ p 33

  34. The theory: Classical Linear Logic Disjunction Conjunction ⅋ ⊗ Multiplicative ⊕ & Additive . ⊥ Negation Red: input Blue: output 34

  35. ∧ The theory: Classical Linear Logic ∨ Disjunction Conjunction ⅋ ⊗ Multiplicative ⊕ & Additive . ⊥ Negation ¬ Red: input Blue: output 35

  36. The theory: Classical Linear Logic ⊢ A ⊥ , B 36

  37. The theory: Classical Linear Logic ⊢ A ⊥ , B ⊢ B ⊥ , C 37

  38. The theory: Classical Linear Logic ⊢ A ⊥ , B ⊢ B ⊥ , C ⊢ A ⊥ , C 38

  39. The theory: Classical Linear Logic ⊢ Height_cm ⊥ , Weight_kg ⊥ , Length_cm ⊢ Length_cm ⊥ , Length_inch ⊢ Height_cm ⊥ , Weight_kg ⊥ , Length_inch 39

  40. The theory: Classical Linear Logic ⊢ Height_cm ⊥ , Weight_kg ⊥ , Length_cm ⊢ Length_cm ⊥ , Length_inch ⊢ Height_cm ⊥ , Weight_kg ⊥ , Length_inch Select Cm to Length Inch 40

  41. The theory: Classical Linear Logic 41

  42. The theory: Proofs-as-processes Γ ⇒ π 42

  43. Example: Tensor ( ⊗ ) rule 43

  44. 44

  45. B U F F E R P A R A L L E L C H O I C E S E Q U E N C E 45

  46. WS Composition using proofs-as-processes Prove Extract Realisation Translate π -calculus Requested to CLL ... Service term 46

  47. WS Composition using proofs-as-processes Prove Extract Realisation Translate π -calculus Requested to CLL ... Service term 47

  48. Ski example specified in CLL SelectModel:  ⊢ PRICE_LIMIT ⊥ , SKILL_LEVEL ⊥ , BRAND ⊗ MODEL SelectLength :  ⊢ HEIGHT_CM ⊥ , WEIGHT_KG ⊥ , LENGTH_CM Cm2Inch :  ⊢ LENGTH_CM ⊥ , LENGTH_IN Usd2Nok :  ⊢ PRICE_USD ⊥ , PRICE_NOK SelectSki :  ⊢ LENGTH_IN ⊥ , BRAND ⊥ , MODEL ⊥ , PRICE_USD ⊕ EXCEPTION 48

  49. Real Estate Example specified in CLL HomeDir : ⊢ HOME_CRITERIA ⊥ , HOME_LISTING 1. CriminalService : ⊢ REGION ⊥ , CRIMINAL_ACT 2. HouseAlert : ⊢ HOME_LISTING ⊥ , CRIMINAL_ACT ⊥ , 3. DESIRED_LEVEL ⊥ , HOME_TITLE_ID ⊗ HOME_AGENT_ID ⊗ HOME_DESC Buyer : ⊢ HOME_DESC ⊥ , HOME_OFFER 4. EstateAgentSeller : ⊢ HOME_AGENT_ID ⊥ , HOME_OFFER ⊥ , 5. ACCEPTED_OFFER ⊕ REJECTED_OFFER MortgageService : ⊢ CLIENT_INFO ⊥ , PREAPPROVAL ⊕ EXM 6. ContractService : ⊢ PREAPPROVAL ⊥ , ACCEPTED_OFFER ⊥ , 7. CONTRACT TitleSearch : ⊢ HOME_TITLE_ID ⊥ , TITLE ⊗ 8. (HOME_INSURANCE ⊕ HOME_INS_ID) HomeInsurance : ⊢ HOME_INS_ID ⊥ , HOME_INS 9. Settlement : ⊢ TITLE ⊥ , CONTRACT ⊥ , HOME_INS ⊥ , 10. SETTLEMENT 49

  50. Ski Request in CLL ⊢ PRICE_LIMIT ⊥ , SKILL_LEVEL ⊥ , HEIGHT_CM ⊥ , WEIGHT_KG ⊥ , PRICE_NOK ⊕ ?EXCEPTION 50

  51. Ski Request in CLL ⊢ PRICE_LIMIT ⊥ , SKILL_LEVEL ⊥ , HEIGHT_CM ⊥ , WEIGHT_KG ⊥ , PRICE_NOK ⊕ ?EXCEPTION What is the final exception?  Metavariables + unification! 51

  52. WS Composition using proofs-as-processes Prove Extract Realisation Translate π -calculus Requested to CLL ... Service term 52

  53. Proof for the Ski example 53

  54. WS Composition using proofs-as-processes Prove Extract Realisation Translate π -calculus Requested to CLL ... Service term 54

  55. Ski Result in π -calculus 55

  56. Real Estate Result 56

  57. WS Composition using proofs-as-processes Prove Extract Realisation Translate π -calculus Requested to CLL Execution Service term 57

  58. Execution: PiVizTool  π -calculus is executable!  PiVizTool:  Visualisation of connections  Animation of execution  Empirical verification 58

  59. PiVizTool 59

  60. WS Composition using proofs-as-processes Prove Extract Realisation Translate π -calculus Requested to CLL Translation Service term Upcoming! BPEL OWL-S 60

  61. Implementation: Details  HOL Light – flexible, programmable  Isabelle Light – procedural proofs, metavariables π -calculus CLL  Conservative  Syntax (polymorphic type)  Combined inference rules – proofs-as-processes  Substitution  A few functions 61

  62. Implementation: π -calculus P ::= define_type (A) Agent = | 0 Zero | x(y).P | In A (A list) Agent | x<y>.P | Out A (A list) Agent | ( ν x) P | Res (A list) Agent | P || P | Comp Agent Agent | P + P | Plus Agent Agent 62

  63. Implementation: CLL 63

  64. Implementation: Proofs-as- processes 64

  65. References  P. Papapanagiotou and J. Fleuriot (2011). Formal verification of Web Services composition using Linear Logic and the pi- calculus , In Proceedings of 9th IEEE European Conference on Web Services (ECOWS 2011), pages 31-38, September 14-16, 2011, Lugano, Switzerland. IEEE Computer Society.  P. Papapanagiotou and J. Fleuriot (2011). A theorem proving framework for the formal verification of Web Services Composition , In Proceedings WWV 2011, EPTCS 61, pp. 1-16, doi: 10.4204/EPTCS.61.1 65

  66. Prospect for MSc Pr MSc Project oject and beyond ! Contact us! 66

Recommend


More recommend