perspec ves on dark energy
play

Perspec'vesonDarkEnergy beyondthesphericalcow RobertCaldwell Cos - PowerPoint PPT Presentation

Perspec'vesonDarkEnergy beyondthesphericalcow RobertCaldwell Cos moo 2008 DartmouthCollege Madison,Wisconsin DarkEnergyEqua/onofState


  1. Perspec'ves
on
Dark
Energy
 beyond
the
spherical
cow
 Robert
Caldwell
 Cos moo 
2008
 Dartmouth
College
 Madison,
Wisconsin


  2. Dark
Energy
Equa/on
of
State
 WMAP
5:
Komatsu
et
al,
arxiv:0803.0547
 Ω m h 2 = 0 . 1369 ± 0 . 0037 Ω Λ = 0 . 721 ± 0 . 015 w = − 0 . 984 +0 . 065 Ω k = − 0 . 0046 +0 . 0066 − 0 . 0067 − 0 . 064

  3. Dynamical
Dark
Energy:
Quintessence
 aLempt
a
classifica'on
of
scalar
field
models
 thawing 
 Field
is
cri'cally
damped
un'l
Hubble
fric'on
drops;
 w 
starts
at
‐1
and
grows
larger
 any
field
near
minimum:
V=V’=0
 massive
scalar,
axion
/
pngb
 freezing 
 Field
decays
un'l
curvature
of
poten'al
causes
field
 to
slow;
 w 
evolves
towards
‐1
 “tracker”
/
runaway
or
vacuumless
field
 s'cking
point
&
glaciers
 A
simplisCc
view
may
help
to
understand
the
range
of
possibiliCes
 CriLenden
 et
al ,
PRL
98,
251301
(2007);
Huterer
&
Peiris,
PRD
75,
083503
(2007)


  4. Dynamical
Dark
Energy:
Quintessence
 phase
space
domains
 ALempt
to
iden'fy
a
 scale
for
dw/d ln a
 In
pracCce,
these
may
be

 difficult
to
disCnguish
 Caldwell
&
Linder,
PRL
95,
141301
(2005)
 also
see:
 CriLenden
 et
al ,
PRL
98,
251301
(2007);
Huterer
&
Peiris,
PRD
75,
083503
(2007)


  5. Dynamical
Dark
Energy
 w ( a ) = w 0 + w a (1 − a ) chi‐by‐eye


  6. w
 perspecCves
on
dark
energy
 w=‐1?

 Simple
parameteriza'ons
of
w(z)
may
be
suscep'ble
to
bias
towards
 w=‐1.
 w>‐1?

 Binned
distance
data
may
be
suscep'ble
to
bias
towards
 w>‐1 .
 w<‐1?

 Distance
data
may
be
suscep'ble
to
bias
towards
 w<‐1 .


  7. w
 w<‐1?

 Distance
data
may
be
suscep'ble
to
bias
towards
 w<‐1 .
 2 ( w − w 0 ) 2 ∂ 2 r r ( z, w ) = r | w 0 + ( w − w 0 ) ∂ r ∂ w | w 0 + 1 ∂ w 2 | w 0 + ... ∂ w , ∂ 2 r ∂ r ∂ w 2 < 0 An
increase
in
 w=w 0 + Δ 
produces
more
change
in
 r 

than
 a
decrease
 w=w 0 ‐ Δ .
 More
change
in
r
means
poorer
fit
of
model
to
data.
 Symmetric
errors
on
distance
or
magnitude
will
cause
 the
likelihood
L(w)=exp(‐ χ 2 [ w ] /2)
to
be
skewed
towards
 nega've
 w :
 γ W <0.
 � w � − w peak ≈ 1 2 γ w σ w , � w � < w 0 , w peak > w 0

  8. w
 w<‐1?

 Distance
data
may
be
suscep'ble
to
bias
towards
 w<‐1 .
 marginalize! � w � < w 0 w 0 < w peak

  9. w
 w<‐1?

 Distance
data
may
be
suscep'ble
to
bias
towards
 w<‐1 .
 Sarkar,
Cooray,
Caldwell
(in
prepara'on,
2008)


  10. Lost?
 Is
Dark
Energy
Phenomena

 due
to
New
GravitaCon?


  11. Gravity?
 Is
dark
energy
due
to
new
gravita'onal
phenomena?
 A
problem
of
balance:
 3 H 2 = 8 π G ρ Not
enough
curvature
per
unit
mass?
 Consider
a
modulaCon
in
the
strength
of
gravitaCon
that
produces
 dark
energy
phenomena
consistent
with
LCDM.
 Local
and
Global
descrip'ons
of
space'me
curvature
 ds 2 = − (1 − 2 Gm r ) dt 2 + (1 + 2 γ Gm x 2 r ) d � ds 2 = − a 2 [(1 + 2 ψ ) dt 2 + (1 − 2 φ ) d � x 2 ] Consistent
with
a
variety
of
gravitaConal
theories!


  12. Gravity?
 Is
dark
energy
due
to
new
gravita'onal
phenomena?
 ds 2 = − a 2 [(1 + 2 ψ ) dt 2 + (1 − 2 φ ) d � x 2 ] x = − � ¨ ∇ 2 φ = 4 π G δρ φ � = ψ : � ∇ ψ ,

  13. Gravity?
 Build
a
phenomenological
model
to
test
for
consistency
 Consider
a
background
expansion
consistent
with
LCDM
 Impose
inequality
between
gravita'onal
poten'als
 ψ ≡ (1 + ̟ ) φ , ̟ = ̟ ( t, � x ) Toy
model:
dark
energy
domina'on
causes
gravita'onal
“slip”
 ̟ ( t ) = ̟ 0 ρ DE / ρ m ( t ) expect ̟ 0 ∼ ± 1 Caldwell,
Cooray,
Melchiorri,
PRD
76,
023507
(2007)
 Daniel
et
al,
PRD
77,
103513
(2008)
 busy!
 Bertschinger,
ApJ
648,
797
(2006)
 ̟ , γ , η , Φ ± , ... Bertschinger
&
Zukin,
PRD
78,
024015
(2008)
 Hu
&
Sawicki,
PRD
76,
104043
(2007)
 Zhang
et
al,
PRL
99,
141302
(2007)
…


  14. Gravity?
 Build
a
phenomenological
model
to
test
for
consistency
 cmb :
WMAP5
+
 sne :
Union
+
 wl :
CFHTLS
+
 isw :
SDSS
x
WMAP

 Daniel
 et
al
 (in
prepara'on,
2008)


  15. Evidence
for
our
Robertson‐Walker
space'me
 A
Mirage?
 Maartens
et
al,
PRD
51,
1525
(1995)
 Is
dark
energy
really
there?

 Hogg
et
al,
ApJ
624,
54
(2005)
 A
Test
of
the
Copernican
Principle
 also:
Goodman
PRD
52,
1821
(1995)
 Stebbins
&
RC,
PRL
100,
191302
(2008)


  16. u ‐distor'on
 A
blackbody
spectrum
at
temperature
T
mixed
 with
a
blackbody
at
temperature
T+ Δ T
produces
 a
 u ‐distorted
blackbody.
 Stebbins,
astro‐ph/0703541
 � ∞ 3 � dz ′ d τ n ′ ) 2 ) n ′ (1 + (ˆ u [ˆ n ] = d ˆ n · ˆ 16 π dz ′ 0 � 2 � ∆ T n, z ] − ∆ T n ′ , ˆ T [ˆ n, ˆ T [ˆ n, z ] × Degenerate
with
Compton
y‐distor'on
parameter:
u
=
2y
 FIRAS:
y
<
15
x
10 ‐6 
(95%):
Fixen
et
al,
ApJ
473,
576
(1996)


  17. Nonlinear
Inhomogeneous
Space'me
 ( ∂ r R ) 2 ds 2 = − dt 2 + 1 + k ( r ) r 2 dr 2 + R 2 ( t, r ) d Ω 2 Lemaitre
(1933),
Tolman
(1934),
Bondi
(1947)
 (See
Krasinski
(1997)
for
more
general
 inhomogeneous,
perfect
fluid
models)
 k(r) :
curvature
func'on
fixes
the
mass
density
profile
 R(t,r) :
solve
for
the
radially‐dependent
scale
factor
 k ( r ) 1 − Ω 0 = H 2 1 + ( r/r 0 ) n 0 InstrucCons :
Garfinkle,
CQG
23,
4811
(2006),

 Garcia‐Bellido
&
Haugbolle,
JCAP
0804:003
(2008)


  18. Nonlinear
Inhomogeneous
Space'me
 Single‐sca\ering
recipe:
 √ 1 + kr 2 √ 1 − L 2 − ˙ R ′ dR R = ˙ (1 + z )(1 − L 2 Q ) dz R ′ R ( t, r ) = a ( t, r ) r a ′ √ 1 + kr 2 √ 1 − L 2 − ˙ aR ′ da ˙ = RR ′ ℓ L = (1+ z ) R , Q = 1 − ˙ dz R ˙ R ′ (1 + z )(1 − L 2 Q ) R ′

  19. Nonlinear
Inhomogeneous
Space'me
 u ‐distor'on
rules
out
a
wide
range
of
parameters
describing
 an'‐Copernican,
inhomogeneous
cosmological
models
 n=2
(smooth)
 future
 FIRAS
 Caldwell
&
Stebbins,
in
prepara'on
(2008)


  20. Nonlinear
Inhomogeneous
Space'me
 u ‐distor'on
rules
out
a
wide
range
of
parameters
describing
 an'‐Copernican
alterna'ves
to
Dark
Energy
 n=2
(smooth)
 future
 FIRAS
 BAO,
CMB,
H,
SNe
 Caldwell
&
Stebbins,
in
prepara'on
(2008)


  21. Nonlinear
Inhomogeneous
Space'me
 u ‐distor'on
rules
out
a
wide
range
of
parameters
describing
 an'‐Copernican
alterna'ves
to
Dark
Energy
 n=4
(sharp)
 future
 FIRAS
 BAO,
CMB,
H,
SNe
 Caldwell
&
Stebbins,
in
prepara'on
(2008)


  22. Λ ? Q ρ G

Recommend


More recommend