pe pedestria ian n tra trajectory jectory predi redicti
play

Pe Pedestria ian n Tra Trajectory jectory Predi redicti ction - PowerPoint PPT Presentation

Pe Pedestria ian n Tra Trajectory jectory Predi redicti ction on Ov Overv rview What is pedestrian trajectory prediction good for? What is the task of pedestrian trajectory prediction? What makes trajectory prediction


  1. Pe Pedestria ian n Tra Trajectory jectory Predi redicti ction on

  2. Ov Overv rview • What is pedestrian trajectory prediction good for? • What is the task of pedestrian trajectory prediction? • What makes trajectory prediction challenging? • What kind models are used for trajectory prediction? – Deterministic models – Stochastic Models • How to model social interactions? • How to model agent-scene interactions? CV3DST | Prof. Leal-Taixé 2

  3. In Introduction Autonomous vehicles must predict the future movements of • pedestrians in order to avoid fatal collisions CV3DST | Prof. Leal-Taixé 3

  4. In Introduction Autonomous vehicles must predict the future movements of • pedestrians in order to avoid fatal collisions CV3DST | Prof. Leal-Taixé 4

  5. In Introduction Social robots that move autonomously through crowded scenes • and interact with moving humans CV3DST | Prof. Leal-Taixé 5

  6. In Introduction Motion models improve the performance of Multi-Object Trackers • www.motchallenge.net CV3DST | Prof. Leal-Taixé 6

  7. Ta Task of pe pedestri rian n tra rajectory ry pre prediction Scene • Sequence of observations: " = " for 𝑢 = 1, … , 𝑈 #$% " , 𝑧 ! 𝑌 ! 𝑦 ! • Ground Truth: " = " , 𝑧 ! " 𝑍 𝑦 ! ! for 𝑢 = 𝑈 #$%&' , … , 𝑈 ()*+ • Prediction: " = 𝑔 + " , 𝑧 ! " 𝑍 , 𝑌 ! = 𝑦 ! ! for 𝑢 = 𝑈 #$%&' , … , 𝑈 ()*+ CV3DST | Prof. Leal-Taixé 7

  8. In Introduction Human motion behavior is influenced by a variety of different factors: • 2. Personal 1. Destination Preferences 3. Human – Space 4. Human – Human Interactions Interactions CV3DST | Prof. Leal-Taixé 8

  9. So Soci cial l Force ce Model Contribution: Mathematical model of dynamics a: Pedestrian act in force field 𝐺 like particles e.g. in • Idea: an electric field +- ! . " 𝑦 = +" ! = • Second Newton’s law: ̈ / • Trajectory x 𝑢 is solution of differential equation [Helbing et al. 98] Social Force Model CV3DST | Prof. Leal-Taixé 9

  10. So Soci cial l Force ce Model Obstacle B Destination and personal ⃗ preferences s 𝐺 direction of desired velocity !$ destination # = ⃗ # ⃗ ⃗ # ( ⃗ 𝐺 𝐺 𝑤 " 𝑢 , 𝑤 " 𝑓 " ) " " ⃗ " 𝐺 ! Human – Human interactions α distance betw. peds Destination of 𝛽 ⃗ 1 𝐺 "$ (⃗ 𝑓 " , ⃗ 𝑠 "$ ) Pedestrian 𝛽 $ ⃗ 𝐺 Human – Space interactions !# 𝛾 ⃗ " ) 1 𝐺 "! (⃗ 𝑓 " , ⃗ 𝑠 ! ! CV3DST | Prof. Leal-Taixé 10

  11. ̈ So Soci cial l Force ce Model • Force resultant determines motion of pedestrian 𝛽 • The respective trajectory 𝑦 𝑢 is the solution of a differential equation: 𝑦(𝑢) = 𝑒𝑦 < 𝑒𝑢 < = 𝐺 = (𝑢) CV3DST | Prof. Leal-Taixé 11

  12. So Soci cial l Force ce Model • The force between pedestrians is described by the gradient of a repulsive potential 𝑊 => : ‖%"#‖ 𝑠 => = 𝑊 ? 𝑓 @ ⃗ 𝐺 => ⃗ 𝑠 => = − ∇ ⃗ ) "# 𝑊 => (⃗ 𝑠 => ) with 𝑊 => ⃗ & • Parameters 𝑊 ? and 𝜏 determine the shape of this potential • Parameters effect strength of interaction between pedestrians CV3DST | Prof. Leal-Taixé 12

  13. So Soci cial l Force ce Model • Exponential potential shaped by 𝑊 ? and 𝜏: • Interaction Potential: ‖%"#‖ 𝑠 => = 𝑊 ? 𝑓 @ • 𝑊 => ⃗ & CV3DST | Prof. Leal-Taixé 13

  14. So Soci cial l Force ce Model • Exponential potential shaped by 𝑊 ? and 𝜏: • Interaction Potential: ‖%"#‖ 𝑠 => = 𝑊 ? 𝑓 @ • 𝑊 => ⃗ & CV3DST | Prof. Leal-Taixé 14

  15. So Soci cial l Force ce Model • Exponential potential shaped by 𝑊 ? and 𝜏: • Interaction Potential: ‖%"#‖ 𝑠 => = 𝑊 ? 𝑓 @ • 𝑊 => ⃗ & CV3DST | Prof. Leal-Taixé 15

  16. So Soci cial l Force ce Model • Exponential potential shaped by 𝑊 ? and 𝜏: • Interaction Potential: ‖%"#‖ 𝑠 => = 𝑊 ? 𝑓 @ • 𝑊 => ⃗ & CV3DST | Prof. Leal-Taixé 16

  17. So Soci cial l Force ce Model l Si Simula lati tion CV3DST | Prof. Leal-Taixé 17

  18. Dr Drawba back ck of So Soci cial l Force ce Model • Model requires many parameters for each agent and all agent-agent and agent-environment pairs • Shape of interaction functions are handcrafted CV3DST | Prof. Leal-Taixé 18

  19. Dr Drawba back ck of So Soci cial l Force ce Model l Handcrafted Learned Functions Functions CV3DST | Prof. Leal-Taixé 19

  20. Ne Neural Ne Network k fo for Trajectory Prediction • Building a naïve prediction model with FC layers • FC Layers do not account for sequential and temporal behavior of trajectories Recurrent Neural Networks CV3DST | Prof. Leal-Taixé 20

  21. Rec Recurren ent Neu eural al Net etwor orks https://colah.github.io/posts/2015-08-Understanding-LSTMs/ CV3DST | Prof. Leal-Taixé 21

  22. Si Simple le RNN CV3DST | Prof. Leal-Taixé 22

  23. LSTM (Lo LSTM Long ng Sho Short-te term Memory) Cell Forget Output State Gate Hidden Output Input State Gate Gate [Hochreiter et al. 97] Long Short-term Memory CV3DST | Prof. Leal-Taixé 23

  24. LSTM LSTM for Tr Trajecto ctory Predicti ction • Using a sinlge LSTM does not work well Encoder-Decoder Architecture CV3DST | Prof. Leal-Taixé 24

  25. LS LSTM Encode der –De Decode der Ar Archit itecture Input Output LSTM LSTM ()*,…,- !"# z ()- !"#$% ,…,- &'() & X ' Y ' Encoder Decoder Compressed (latent) representation # Training Objective: ℒ = Y − Y < CV3DST | Prof. Leal-Taixé 25

  26. Van Vanilla a LSTM • Vanilla LSTM is not able to predict trajectories of interacting pedestrians [Zhang et al. 19] SR-LSTM CV3DST | Prof. Leal-Taixé 26

  27. So Soci cial l LSTM LSTM Contribution: Modeling social interactions • LSTM encoder-decoder architectures • Social pooling between neighboring pedestrians in each time step [Alahi et al. 16] Social LSTM CV3DST | Prof. Leal-Taixé 27

  28. So Soci cial l LSTM LSTM – Po Pooli ling g Module le • Interaction Module pools hidden states of LSTM of pedestrian in vicinity • Pooled hidden states are passed to decoder for next step prediction [Alahi et al. 16] Social LSTM CV3DST | Prof. Leal-Taixé 28

  29. So Soci cial l LSTM LSTM – Res Result Comparison of Models with and without social pooling Social Pooling can resolve social interactions Plots by Philipp Mondorf 20, BA CV3DST | Prof. Leal-Taixé 29

  30. Pe Pede destria ian Trajectorie ies are multim imoda dal Same past trajectory can have multiple realistic future trajectories CV3DST | Prof. Leal-Taixé 30

  31. De Dete terministi tic c vs vs. Sto Stoch chasti tic c Models ls Deterministic Stochastic One-to-one mapping One-to-many mapping Learning distribution of future trajectories instead of deterministic mapping Distribution of 2d distribution of Scenario final end final end CV3DST | Prof. Leal-Taixé 31

  32. To Towa wards Gene nerati tive ve Models ls Deterministic Generative Models Models CV3DST | Prof. Leal-Taixé 32

  33. Ge Genera rative M Models Figure from Ian Goodfellow, Tutorial on Generative Adversarial /networks, 2017 CV3DST | Prof. Leal-Taixé 33

  34. Rec Recap ap: Gen ener erat ative e Model Models Figure from Ian Goodfellow, Tutorial on Generative Adversarial /networks, 2017 CV3DST | Prof. Leal-Taixé 34

  35. Var Variat ation onal al Autoen oencoder oder https://towardsdatascience.com/understanding- [Kingma et al. 16] Variational Bayes CV3DST | Prof. Leal-Taixé 35 variational-autoencoders-vaes-f70510919f73

  36. Var Variat ation onal al Autoen oencoder oder https://towardsdatascience.com/understanding- [Kingma et al. 16] Variational Bayes CV3DST | Prof. Leal-Taixé 36 variational-autoencoders-vaes-f70510919f73

  37. Var Variat ation onal al Autoen oencoder oder https://towardsdatascience.com/understanding- [Kingma et al. 16] Variational Bayes CV3DST | Prof. Leal-Taixé 37 variational-autoencoders-vaes-f70510919f73

  38. Var Variat ation onal al Autoen oencoder oder https://towardsdatascience.com/understanding- [Kingma et al. 16] Variational Bayes CV3DST | Prof. Leal-Taixé 38 variational-autoencoders-vaes-f70510919f73

  39. Variat Var ation onal al Autoen oencoder oder Ku Kulbac ack- Le Leibler (K (KL) diverg di rgence https://towardsdatascience.com/understanding- [Kingma et al. 16] Variational Bayes CV3DST | Prof. Leal-Taixé 39 variational-autoencoders-vaes-f70510919f73

  40. Var Variat ation onal al Autoen oencoder oder https://towardsdatascience.com/understanding- [Kingma et al. 16] Variational Bayes CV3DST | Prof. Leal-Taixé 40 variational-autoencoders-vaes-f70510919f73

  41. Var Variat ation onal al Autoen oencoder oder Each element of z encodes a different feature CV3DST | Prof. Leal-Taixé 41

  42. Var Variat ation onal al Autoen oencoder oder Degree of smile Head pose CV3DST | Prof. Leal-Taixé 42

Recommend


More recommend