pattern avoiding ascent sequences
play

Pattern-avoiding ascent sequences An interesting equivalence - PowerPoint PPT Presentation

Pattern-avoiding ascent sequences Lara Pudwell Introduction & History Pattern-avoiding ascent sequences An interesting equivalence Generating Tree Counting Nodes Summary Lara Pudwell faculty.valpo.edu/lpudwell 2015 Joint Mathematics


  1. Pattern-avoiding ascent sequences Lara Pudwell Introduction & History Pattern-avoiding ascent sequences An interesting equivalence Generating Tree Counting Nodes Summary Lara Pudwell faculty.valpo.edu/lpudwell 2015 Joint Mathematics Meetings AMS Special Session on Enumerative Combinatorics January 11, 2015

  2. Pattern-avoiding Ascent Sequences ascent sequences Lara Pudwell Definition Introduction & An ascent sequence is a string x 1 · · · x n of non-negative History integers such that: An interesting equivalence ◮ x 1 = 0 Generating Tree ◮ x n ≤ 1 + asc ( x 1 · · · x n − 1 ) for n ≥ 2 Counting Nodes Summary A n is the set of ascent sequences of length n A 2 = { 00 , 01 } More examples: 01234, 01013 A 3 = { 000 , 001 , 010 , 011 , 012 } Non-example: 01024

  3. Pattern-avoiding Ascent Sequences ascent sequences Lara Pudwell Definition Introduction & An ascent sequence is a string x 1 · · · x n of non-negative History integers such that: An interesting equivalence ◮ x 1 = 0 Generating Tree ◮ x n ≤ 1 + asc ( x 1 · · · x n − 1 ) for n ≥ 2 Counting Nodes Summary A n is the set of ascent sequences of length n A 2 = { 00 , 01 } More examples: 01234, 01013 A 3 = { 000 , 001 , 010 , 011 , 012 } Non-example: 01024 Theorem |A n | is the n th Fishburn number (OEIS A022493). n |A n | x n = � � � (1 − (1 − x ) i ) n ≥ 0 n ≥ 0 i =1

  4. Pattern-avoiding Patterns ascent sequences Lara Pudwell Definition Introduction & History The reduction of x = x 1 · · · x n , red ( x ), is the string obtained An interesting by replacing the i th smallest digits of x with i − 1. equivalence Generating Tree Example: red (273772) = 021220 Counting Nodes Summary

  5. Pattern-avoiding Patterns ascent sequences Lara Pudwell Definition Introduction & History The reduction of x = x 1 · · · x n , red ( x ), is the string obtained An interesting by replacing the i th smallest digits of x with i − 1. equivalence Generating Tree Example: red (273772) = 021220 Counting Nodes Pattern containment/avoidance Summary a = a 1 · · · a n contains σ = σ 1 · · · σ m iff there exist 1 ≤ i 1 < i 2 < · · · < i m ≤ n such that red ( a i 1 a i 2 · · · a i m ) = σ . a B ( n ) = |{ a ∈ A n | a avoids B }| 001010345 contains 012, 000, 1102; avoids 210.

  6. Pattern-avoiding Patterns ascent sequences Lara Pudwell Definition Introduction & History The reduction of x = x 1 · · · x n , red ( x ), is the string obtained An interesting by replacing the i th smallest digits of x with i − 1. equivalence Generating Tree Example: red (273772) = 021220 Counting Nodes Pattern containment/avoidance Summary a = a 1 · · · a n contains σ = σ 1 · · · σ m iff there exist 1 ≤ i 1 < i 2 < · · · < i m ≤ n such that red ( a i 1 a i 2 · · · a i m ) = σ . a B ( n ) = |{ a ∈ A n | a avoids B }| 001010345 contains 012, 000, 1102; avoids 210.

  7. Pattern-avoiding Patterns ascent sequences Lara Pudwell Definition Introduction & History The reduction of x = x 1 · · · x n , red ( x ), is the string obtained An interesting by replacing the i th smallest digits of x with i − 1. equivalence Generating Tree Example: red (273772) = 021220 Counting Nodes Pattern containment/avoidance Summary a = a 1 · · · a n contains σ = σ 1 · · · σ m iff there exist 1 ≤ i 1 < i 2 < · · · < i m ≤ n such that red ( a i 1 a i 2 · · · a i m ) = σ . a B ( n ) = |{ a ∈ A n | a avoids B }| 001010345 contains 012, 000, 1102; avoids 210.

  8. Pattern-avoiding Patterns ascent sequences Lara Pudwell Definition Introduction & History The reduction of x = x 1 · · · x n , red ( x ), is the string obtained An interesting by replacing the i th smallest digits of x with i − 1. equivalence Generating Tree Example: red (273772) = 021220 Counting Nodes Pattern containment/avoidance Summary a = a 1 · · · a n contains σ = σ 1 · · · σ m iff there exist 1 ≤ i 1 < i 2 < · · · < i m ≤ n such that red ( a i 1 a i 2 · · · a i m ) = σ . a B ( n ) = |{ a ∈ A n | a avoids B }| 001010345 contains 012, 000, 1102; avoids 210. Goal Determine a B ( n ) for many of choices of B .

  9. Pattern-avoiding Previous Work ascent sequences Lara Pudwell ◮ Duncan & Steingr´ ımsson (2011) Introduction & History Pattern b a b ( n ) OEIS An interesting 001, 010 2 n − 1 equivalence A000079 011, 012 Generating Tree 102 (3 n − 1 + 1) / 2 Counting Nodes A007051 0102, 0112 Summary 101, 021 � 2 n 1 � A000108 0101 n +1 n ◮ Mansour and Shattuck (2014) Callan, Mansour and Shattuck (2014) Patterns B a B ( n ) OEIS � n − 1 � n − 1 � C ℓ 1012 A007317 ℓ =0 ℓ 1 − 4 x +3 x 2 0123 ogf: A080937 1 − 5 x +6 x 2 − x 3 8 pairs of length � 2 n 1 � A000108 4 patterns n +1 n

  10. Pattern-avoiding Other sequences (Baxter & P.) ascent sequences Lara Pudwell Introduction & Patterns B OEIS a B ( n ) History 000,011 A000027 n An interesting � + 1 equivalence � n 011,100 A000124 � + n 2 Generating Tree � n 001,210 A000125 Counting Nodes 3 000,101 A001006 M n Summary 000,001 A000045 F n +1 001,100 A000071 F n +2 − 1 101,110 A001519 F 2 n − 1 100,101 A025242 (Generalized Catalan) 021,102 A116702 |S n (123 , 3241) | 102,120 A005183 |S n (132 , 4312) | 101,120 A116703 |S n (231 , 4123) | � n − 1 � n − 1 � C ℓ 201,210 A007317 ℓ =0 ℓ

  11. Pattern-avoiding Binomial convolutions ascent sequences Lara Pudwell Introduction & History An interesting Theorem (P.) equivalence a 201 , 210 ( n ) = � n − 1 � n − 1 � C ℓ . Generating Tree ℓ =0 ℓ Counting Nodes Summary Theorem (Mansour & Shattuck) � n − 1 a 1012 ( n ) = � n − 1 � C ℓ . ℓ =0 ℓ Conjecture (Duncan & Steingr´ ımsson) a 0021 ( n ) = � n − 1 � n − 1 � C ℓ . ℓ =0 ℓ

  12. Pattern-avoiding Binomial convolutions ascent sequences Lara Pudwell Introduction & History An interesting Theorem (P.) equivalence a 201 , 210 ( n ) = � n − 1 � n − 1 � C ℓ . Generating Tree ℓ =0 ℓ Counting Nodes Summary Theorem (Mansour & Shattuck) � n − 1 a 1012 ( n ) = � n − 1 � C ℓ . ℓ =0 ℓ / Conjecture (Duncan & Steingr´ / / / / / / / / / / / / ımsson) / Theorem (P.) a 0021 ( n ) = � n − 1 � n − 1 � C ℓ . ℓ =0 ℓ

  13. Pattern-avoiding Wilf Equivalence ascent sequences Lara Pudwell Definition Introduction & Patterns σ and ρ are Wilf-equivalent if a σ ( n ) = a ρ ( n ) for History n ≥ 1. In this case, write: σ ∼ ρ . An interesting equivalence Generating Tree Example: 00 ∼ 01. Counting Nodes a 00 ( n ) = 1 (the strictly increasing sequence) Summary a 01 ( n ) = 1 (the all zeros sequence).

  14. Pattern-avoiding Wilf Equivalence ascent sequences Lara Pudwell Definition Introduction & Patterns σ and ρ are Wilf-equivalent if a σ ( n ) = a ρ ( n ) for History n ≥ 1. In this case, write: σ ∼ ρ . An interesting equivalence Generating Tree Example: 00 ∼ 01. Counting Nodes a 00 ( n ) = 1 (the strictly increasing sequence) Summary a 01 ( n ) = 1 (the all zeros sequence). Known from Duncan/Steingr´ ımsson: All possible Wilf equivalences of length at most 4 are: 00 ∼ 01 10 ∼ 001 ∼ 010 ∼ 011 ∼ 012 102 ∼ 0102 ∼ 0112 101 ∼ 021 ∼ 0101 ∼ 0012 0021 ∼ 1012 (Duncan & Steingr´ ımsson / Mansour & Shattuck / P.)

  15. Pattern-avoiding Binomial convolutions ascent sequences Lara Pudwell Introduction & Theorem (P.) History An interesting a 201 , 210 ( n ) = � n − 1 � n − 1 � C ℓ . equivalence ℓ =0 ℓ Generating Tree Counting Nodes Theorem (Mansour & Shattuck) Summary a 1012 ( n ) = � n − 1 � n − 1 � C ℓ . ℓ =0 ℓ / Conjecture (Duncan & Steingr´ / / / / / / / / / / / / ımsson) / Theorem (P.) a 0021 ( n ) = � n − 1 � n − 1 � C ℓ . ℓ =0 ℓ Proof scribble: generating tree → recurrence → system of functional equations → experimental solution → plug in for catalytic variables

  16. Pattern-avoiding Generating Tree ascent sequences Lara Pudwell Introduction & History 0 An interesting equivalence 00 01 Generating Tree Counting Nodes 000 001 010 011 012 Summary 0000 0001 0010 0011 0012 0100 0101 0102 0110 0111 0112 0120 0121 0122 0123

  17. Pattern-avoiding Generating Tree ascent sequences Lara Pudwell Introduction & History 0 An interesting equivalence 00 01 Generating Tree Counting Nodes 000 001 010 011 012 Summary 0000 0001 0010 0011 0012 0100 0101 0102 0110 0111 0112 0120 0121 0122 0123 Idea: Replace a with an ordered triple of statistics on a.

  18. Pattern-avoiding Generating Tree ascent sequences Lara Pudwell 0 (0,2,0) Introduction & History An interesting 00 (0,1,1) 01 (1,3,0) equivalence Generating Tree 000 (0,1,1) 001 (1,1,2) 010 (0,1,2) 011 (1,2,1) 012 (2,4,0) Counting Nodes Summary

  19. Pattern-avoiding Generating Tree ascent sequences Lara Pudwell 0 (0,2,0) Introduction & History An interesting 00 (0,1,1) 01 (1,3,0) equivalence Generating Tree 000 (0,1,1) 001 (1,1,2) 010 (0,1,2) 011 (1,2,1) 012 (2,4,0) Counting Nodes Summary ◮ root: (0 , 2 , 0) ◮ rules: ( j − 2 , j , 0) → ( j − 1 , j + 1 , 0) , ( i , i + 1 , j − 1 − i ) j − 2 i =0

Recommend


More recommend