part i generalities on gluon tmds
play

Part I Generalities on gluon TMDs J.P. Lansberg (IPNO) Gluon TMD - PowerPoint PPT Presentation

Gluon TMD studies using quarkonia: pinning down the linearly-polarised gluons with di- J production J.P. Lansberg IPN Orsay Paris-Sud U./Paris Saclay U. CNRS/IN2P3 REF 2017 workshop November 13 16, Madrid, Spain J.P. Lansberg


  1. ➩➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➲➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➭ Ù ✆ ❾ P ▼ ➃ ❈ � Ù ✏ ▼ ❻ ✔ ✕ ✏ ❼ ➁ ✟ gg fusion in arbitrary unpolarised process [colourless final state] dσ gg ➀ ➩➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➲➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➭ F 1 ❾ P λ a , λ b ➃ ❈ � f g 1 ✆ 1 f g ▼ λ a , λ b ˆ ˆ ▼ ❻ λ a , λ b ✟ helicity non-flip, azimuthally independent ➩➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➲➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➭ F 2 ❾ P ✏ λ , ✏ λ ➃ ❈ � w 0 ✕ h Ù g 1 ✆ 1 h Ù g ▼ λ , λ ˆ ˆ ▼ ❻ ✔ λ ✟ double helicity flip, azimuthally independent ➩➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➲➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➭ F 3 ❾ P ✏ λ a , λ b ➃ ❈ � w 2 ✕ f g 1 ✆ ✔ ➌ a ✏ b ➑ 1 h Ù g ▼ λ a , λ b ˆ ˆ ▼ ❻ + λ a , λ b ✟ single helicity flip, cos ❼ 2 ϕ ➁ -modulation J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 4 / 20

  2. gg fusion in arbitrary unpolarised process [colourless final state] dσ gg ➀ ➩➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➲➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➭ F 1 ❾ P λ a , λ b ➃ ❈ � f g 1 ✆ 1 f g ▼ λ a , λ b ˆ ˆ ▼ ❻ λ a , λ b ✟ helicity non-flip, azimuthally independent ➩➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➲➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➭ F 2 ❾ P ✏ λ , ✏ λ ➃ ❈ � w 0 ✕ h Ù g 1 ✆ 1 h Ù g ▼ λ , λ ˆ ˆ ▼ ❻ ✔ λ ✟ double helicity flip, azimuthally independent ➩➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➲➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➭ F 3 ❾ P ✏ λ a , λ b ➃ ❈ � w 2 ✕ f g 1 ✆ ✔ ➌ a ✏ b ➑ 1 h Ù g ▼ λ a , λ b ˆ ˆ ▼ ❻ + λ a , λ b ✟ single helicity flip, cos ❼ 2 ϕ ➁ -modulation ➩➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➲➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➵➭ F 4 ❾ P ✏ λ , λ ➃ ❈ � w 4 ✕ h Ù g 1 ✆ 1 h Ù g ▼ λ , ✏ λ ˆ ˆ ▼ ❻ ✔ λ ✟ double helicity flip, cos ❼ 4 ϕ ➁ -modulation J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 4 / 20

  3. Part II Quarkonium production and TMD factorisation applicability/breaking J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 5 / 20

  4. ❼ ➁ Approaches to Quarkonium Production See EPJC (2016) 76:107 for a recent review J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 6 / 20

  5. ❼ ➁ Approaches to Quarkonium Production See EPJC (2016) 76:107 for a recent review No consensus on the mechanisnm at work in quarkonium production J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 6 / 20

  6. ❼ ➁ Approaches to Quarkonium Production See EPJC (2016) 76:107 for a recent review No consensus on the mechanisnm at work in quarkonium production Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, Q ¯ Q , and its hadronisation into a meson J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 6 / 20

  7. ❼ ➁ Approaches to Quarkonium Production See EPJC (2016) 76:107 for a recent review No consensus on the mechanisnm at work in quarkonium production Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, Q ¯ Q , and its hadronisation into a meson Different approaches differ essentially in the treatment of the hadronisation J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 6 / 20

  8. ❼ ➁ Approaches to Quarkonium Production See EPJC (2016) 76:107 for a recent review No consensus on the mechanisnm at work in quarkonium production Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, Q ¯ Q , and its hadronisation into a meson Different approaches differ essentially in the treatment of the hadronisation 3 fashionable models: J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 6 / 20

  9. ❼ ➁ Approaches to Quarkonium Production See EPJC (2016) 76:107 for a recent review No consensus on the mechanisnm at work in quarkonium production Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, Q ¯ Q , and its hadronisation into a meson Different approaches differ essentially in the treatment of the hadronisation 3 fashionable models: C olour Evaporation Model : application of quark-hadron duality; 1 only the invariant mass matters; bleaching via (numerous) sof gluons ? J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 6 / 20

  10. Approaches to Quarkonium Production See EPJC (2016) 76:107 for a recent review No consensus on the mechanisnm at work in quarkonium production Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, Q ¯ Q , and its hadronisation into a meson Different approaches differ essentially in the treatment of the hadronisation 3 fashionable models: C olour Evaporation Model : application of quark-hadron duality; 1 only the invariant mass matters; bleaching via (numerous) sof gluons ? Colour Singlet Model : hadronisation w/o gluon emission; each emission 2 costs α s ❼ m Q ➁ and occurs at short distances; bleaching at the pair-production time J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 6 / 20

  11. Approaches to Quarkonium Production See EPJC (2016) 76:107 for a recent review No consensus on the mechanisnm at work in quarkonium production Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, Q ¯ Q , and its hadronisation into a meson Different approaches differ essentially in the treatment of the hadronisation 3 fashionable models: C olour Evaporation Model : application of quark-hadron duality; 1 only the invariant mass matters; bleaching via (numerous) sof gluons ? Colour Singlet Model : hadronisation w/o gluon emission; each emission 2 costs α s ❼ m Q ➁ and occurs at short distances; bleaching at the pair-production time Colour Octet Mechanism (encapsulated in NRQCD): higher Fock states of 3 the mesons taken into account; Q ¯ Q can be produced in octet states with different quantum # as the meson; bleaching with semi-sof gluons ? J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 6 / 20

  12. Ù Ù Ù ❺ ◗ ✔ ◗ ✔ ◗ ✔ Quarkonium production and TMD factorisation applicability/breaking J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 7 / 20

  13. Ù Ù ❺ ◗ ✔ ◗ ✔ ◗ ✔ Quarkonium production and TMD factorisation applicability/breaking h Ù g receives contributions from Initial-State Interactions (ISI) and 1 Final-State Interactions (FSI) J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 7 / 20

  14. ❺ ◗ ✔ ◗ ✔ ◗ ✔ Quarkonium production and TMD factorisation applicability/breaking h Ù g receives contributions from Initial-State Interactions (ISI) and 1 Final-State Interactions (FSI) Tese can make h Ù g process dependent and even break factorisation 1 Different independent h Ù g functions correspond to specific colour 1 structures. Depending on the process, one extracts different combinations Buffing, Mukherjee, Mulders, PRD 88 (2013) 054027); See also the nice overview by D. Boer : Few Body Syst. 58 (2017) 32 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 7 / 20

  15. ❺ ◗ ✔ ◗ ✔ ◗ ✔ Quarkonium production and TMD factorisation applicability/breaking h Ù g receives contributions from Initial-State Interactions (ISI) and 1 Final-State Interactions (FSI) Tese can make h Ù g process dependent and even break factorisation 1 Different independent h Ù g functions correspond to specific colour 1 structures. Depending on the process, one extracts different combinations Buffing, Mukherjee, Mulders, PRD 88 (2013) 054027); See also the nice overview by D. Boer : Few Body Syst. 58 (2017) 32 Quarkonium production in pp collisions might face factorisation breaking effects if the bleaching of the heavy-quark pair occurs over long times (COM-NRQCD and CEM approaches) as opposed to Colour-Singlet contributions J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 7 / 20

  16. ❺ ◗ ✔ ◗ ✔ ◗ ✔ Quarkonium production and TMD factorisation applicability/breaking h Ù g receives contributions from Initial-State Interactions (ISI) and 1 Final-State Interactions (FSI) Tese can make h Ù g process dependent and even break factorisation 1 Different independent h Ù g functions correspond to specific colour 1 structures. Depending on the process, one extracts different combinations Buffing, Mukherjee, Mulders, PRD 88 (2013) 054027); See also the nice overview by D. Boer : Few Body Syst. 58 (2017) 32 Quarkonium production in pp collisions might face factorisation breaking effects if the bleaching of the heavy-quark pair occurs over long times (COM-NRQCD and CEM approaches) as opposed to Colour-Singlet contributions CS vs. CO contributions should be analysed case by case [reactions and kinematics] J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 7 / 20

  17. Quarkonium production and TMD factorisation applicability/breaking h Ù g receives contributions from Initial-State Interactions (ISI) and 1 Final-State Interactions (FSI) Tese can make h Ù g process dependent and even break factorisation 1 Different independent h Ù g functions correspond to specific colour 1 structures. Depending on the process, one extracts different combinations Buffing, Mukherjee, Mulders, PRD 88 (2013) 054027); See also the nice overview by D. Boer : Few Body Syst. 58 (2017) 32 Quarkonium production in pp collisions might face factorisation breaking effects if the bleaching of the heavy-quark pair occurs over long times (COM-NRQCD and CEM approaches) as opposed to Colour-Singlet contributions CS vs. CO contributions should be analysed case by case [reactions and kinematics] However, if TMD factorisation holds for H 0 +jet as conjectured by D. Boer-C. Pisano, there should be no issue for ◗ ✔ γ , ◗ ✔ Z or ◗ ✔ γ ❺ D. Boer, C. Pisano PRD 91 (2015) 074024 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 7 / 20

  18. Part III Quarkonia and gluon TMDs at hadron colliders J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 8 / 20

  19. � ✟ � P � � Ñ Ñ ❙Ñ ❙ P ✟ ❼ ➁ ✔ 2 � 2 vs 2 � 1 processes J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 9 / 20

  20. � Ñ Ñ ❙Ñ ❙ P ✟ ❼ ➁ ✔ 2 � 2 vs 2 � 1 processes 2 � 1 process : Hard scale can only be the particle mass : Q 2 ✟ M 2 � does not help to study TMD evolution Resulting particle has to be at small q T ( q T P M ) � likely difficult to measure at colliders, in particular for mesons (less for H , W , Z ) J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 9 / 20

  21. 2 � 2 vs 2 � 1 processes 2 � 1 process : Hard scale can only be the particle mass : Q 2 ✟ M 2 � does not help to study TMD evolution Resulting particle has to be at small q T ( q T P M ) � likely difficult to measure at colliders, in particular for mesons (less for H , W , Z ) Back-to-back (low q T ) 2 � 2 process : Produced particles can each have a large Ñ p T adding up to make a small Ñ q T for the pair. One can impose ❙Ñ p T ❙ large enough for the particle to be detectable Tis renders the TMD “region” ( q T P Q ) virtually as wide as we wish Hard scale Q 2 ✟ ❼ p 1 ✔ p 2 ➁ 2 can be tuned to study the QCD evolution of the TMDs Drawback : yield can be populated by Double Parton Scatterings (DPS) J.P.L., H.S. Shao JHEP 1610 (2016) 153, NPB 900 (2015) 273, PLB 751 (2015) 479 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 9 / 20

  22. Ù ❼ ➁ ➀ ✏ ❼ ❼ ➁ ➀ ✔ ❼ ➁ ➁ Ù ✆ Ù ❈ � � ❈ � ✆ ✟ ◗ ❆ Low P T quarkonia and TMDs J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 10 / 20

  23. Ù ❼ ➁ ➀ ✏ ❼ ❼ ➁ ➀ ✔ ❼ ➁ ➁ Ù ✆ Ù ❈ � � ❈ � ✆ ✟ ◗ ❆ Low P T quarkonia and TMDs PHYSICAL REVIEW D 86, 094007 (2012) Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER ¨l Boer* Danie Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands Cristian Pisano † Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 10 / 20

  24. ❼ ➁ ➀ ✏ ❼ ❼ ➁ ➀ ✔ ❼ ➁ ➁ Ù ✆ Ù ❈ � � ❈ � ✆ ✟ ◗ ❆ Low P T quarkonia and TMDs PHYSICAL REVIEW D 86, 094007 (2012) Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER ¨l Boer* Danie Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands Cristian Pisano † Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy Low P T C -even quarkonium production is a good probe of h Ù g 1 In general, heavy-flavor prod. selects out gg channels J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 10 / 20

  25. ✟ ◗ ❆ Low P T quarkonia and TMDs 0.8 0.8 0.8 PHYSICAL REVIEW D 86, 094007 (2012) 2 2 2 σ -1 d σ / d σ -1 d σ / d σ -1 d σ / d (GeV -2 ) (GeV -2 ) (GeV -2 ) Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER q T q T q T 0.7 0.7 0.7 ¨l Boer* Danie χ 0 Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands 0.6 0.6 0.6 ⊥ g = ⊥ g = ⊥ g = χ 2 ( ( ( h 1 h 1 h 1 0) 0) 0) Cristian Pisano † η Q 0.5 0.5 0.5 Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy 0.4 0.4 0.4 Low P T C -even quarkonium production is a 2 〉 = 1 GeV 2 2 〉 = 1 GeV 2 2 〉 = 1 GeV 2 good probe of h Ù g 0.3 0.3 0.3 〈 p T 〈 p T 〈 p T 1 0.2 0.2 0.2 In general, heavy-flavor prod. selects out gg channels 0.1 0.1 0.1 Affect the low P T spectra: 0 0 0 dσ ❼ η Q ➁ dσ ❼ χ Q ,0 ➁ 1 1 0 0 0 0.5 0.5 0.5 1 1 1 1.5 1.5 1.5 2 2 2 2.5 2.5 2.5 3 3 3 ➀ 1 ✏ R ❼ q 2 ➀ 1 ✔ R ❼ q 2 T ➁ & T ➁ d q 2 d q 2 q T q T q T (GeV) (GeV) (GeV) σ σ T T ❈ � w hh 0 h Ù g 1 h Ù g 1 ✆ ( R � ) ❈ � f g 1 f g 1 ✆ J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 10 / 20

  26. ❆ Low P T quarkonia and TMDs 0.8 0.8 0.8 PHYSICAL REVIEW D 86, 094007 (2012) 2 2 2 σ -1 d σ / d σ -1 d σ / d σ -1 d σ / d (GeV -2 ) (GeV -2 ) (GeV -2 ) Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER q T q T q T 0.7 0.7 0.7 ¨l Boer* Danie χ 0 Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands 0.6 0.6 0.6 ⊥ g = ⊥ g = ⊥ g = χ 2 ( ( ( h 1 h 1 h 1 0) 0) 0) Cristian Pisano † η Q 0.5 0.5 0.5 Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy 0.4 0.4 0.4 Low P T C -even quarkonium production is a 2 〉 = 1 GeV 2 2 〉 = 1 GeV 2 2 〉 = 1 GeV 2 good probe of h Ù g 0.3 0.3 0.3 〈 p T 〈 p T 〈 p T 1 0.2 0.2 0.2 In general, heavy-flavor prod. selects out gg channels 0.1 0.1 0.1 Affect the low P T spectra: 0 0 0 dσ ❼ η Q ➁ dσ ❼ χ Q ,0 ➁ 1 1 0 0 0 0.5 0.5 0.5 1 1 1 1.5 1.5 1.5 2 2 2 2.5 2.5 2.5 3 3 3 ➀ 1 ✏ R ❼ q 2 ➀ 1 ✔ R ❼ q 2 T ➁ & T ➁ d q 2 d q 2 q T q T q T (GeV) (GeV) (GeV) σ σ T T ❈ � w hh 0 h Ù g 1 h Ù g 1 ✆ ( R � ) ❈ � f g 1 f g 1 ✆ Cannot tune Q : Q ✟ m ◗ J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 10 / 20

  27. Low P T quarkonia and TMDs 0.8 0.8 0.8 PHYSICAL REVIEW D 86, 094007 (2012) 2 2 2 σ -1 d σ / d σ -1 d σ / d σ -1 d σ / d (GeV -2 ) (GeV -2 ) (GeV -2 ) Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER q T q T q T 0.7 0.7 0.7 ¨l Boer* Danie χ 0 Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands 0.6 0.6 0.6 ⊥ g = ⊥ g = ⊥ g = χ 2 ( ( ( h 1 h 1 h 1 0) 0) 0) Cristian Pisano † η Q 0.5 0.5 0.5 Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy 0.4 0.4 0.4 Low P T C -even quarkonium production is a 2 〉 = 1 GeV 2 2 〉 = 1 GeV 2 2 〉 = 1 GeV 2 good probe of h Ù g 0.3 0.3 0.3 〈 p T 〈 p T 〈 p T 1 0.2 0.2 0.2 In general, heavy-flavor prod. selects out gg channels 0.1 0.1 0.1 Affect the low P T spectra: 0 0 0 dσ ❼ η Q ➁ dσ ❼ χ Q ,0 ➁ 1 1 0 0 0 0.5 0.5 0.5 1 1 1 1.5 1.5 1.5 2 2 2 2.5 2.5 2.5 3 3 3 ➀ 1 ✏ R ❼ q 2 ➀ 1 ✔ R ❼ q 2 T ➁ & T ➁ d q 2 d q 2 q T q T q T (GeV) (GeV) (GeV) σ σ T T ❈ � w hh 0 h Ù g 1 h Ù g 1 ✆ ( R � ) ❈ � f g 1 f g 1 ✆ Cannot tune Q : Q ✟ m ◗ Low P T : Experimentally very difficult First η c production study at collider ever, only released in 2014 for P η c T ❆ 6 GeV LHCb, EPJC75 (2015) 311 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 10 / 20

  28. ✏ � Low P T quarkonia and TMDs II η c production at one-loop : factorisation holds J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 11 / 20

  29. Low P T quarkonia and TMDs II η c production at one-loop : factorisation holds χ c 0,2 factorisation issue ? ✏ Colour Octet - Colour Singlet mixing � Low q T χ c data exist: empirical check of TMD factorisation possible J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 11 / 20

  30. ✔ First phenomenological study of η c production with TMDs M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori - in preparation J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 12 / 20

  31. ✔ First phenomenological study of η c production with TMDs M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori - in preparation Hard coefficient at one loop J. Kuhn, E. Mirkes, PRD 48 (1993) 17; A. Petrelli et al. NPB 514 (1998) 245; J.P. Ma, J.X. Wang, S. Zhao PRD 88 (2013) 014027 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 12 / 20

  32. ✔ First phenomenological study of η c production with TMDs M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori - in preparation Hard coefficient at one loop J. Kuhn, E. Mirkes, PRD 48 (1993) 17; A. Petrelli et al. NPB 514 (1998) 245; J.P. Ma, J.X. Wang, S. Zhao PRD 88 (2013) 014027 Evolution taken in account at NNLL J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 12 / 20

  33. ✔ First phenomenological study of η c production with TMDs M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori - in preparation Hard coefficient at one loop J. Kuhn, E. Mirkes, PRD 48 (1993) 17; A. Petrelli et al. NPB 514 (1998) 245; J.P. Ma, J.X. Wang, S. Zhao PRD 88 (2013) 014027 Evolution taken in account at NNLL Considers both the TMD and FO contributions to extend the q T range up to the LHCb data J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 12 / 20

  34. First phenomenological study of η c production with TMDs M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori - in preparation Hard coefficient at one loop J. Kuhn, E. Mirkes, PRD 48 (1993) 17; A. Petrelli et al. NPB 514 (1998) 245; J.P. Ma, J.X. Wang, S. Zhao PRD 88 (2013) 014027 Evolution taken in account at NNLL Considers both the TMD and FO contributions to extend the q T range up to the LHCb data Matching: inverse variance weighted average vs. ”improved W ✔ Y ” For iW+Y see J.C. Collins et al. PRD94 (2016) 034014 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 12 / 20

  35. First phenomenological study of η c production with TMDs M.G. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori - in preparation Hard coefficient at one loop J. Kuhn, E. Mirkes, PRD 48 (1993) 17; A. Petrelli et al. NPB 514 (1998) 245; J.P. Ma, J.X. Wang, S. Zhao PRD 88 (2013) 014027 Evolution taken in account at NNLL Considers both the TMD and FO contributions to extend the q T range up to the LHCb data Matching: inverse variance weighted average vs. ”improved W ✔ Y ” For iW+Y see J.C. Collins et al. PRD94 (2016) 034014 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 12 / 20

  36. ➐ ➐ � � ❼ ⑦ ➁ ✔ ✔ � ➐ ➐ � ✔ � ❼ ⑦ ➁ ✔ ⑦ ❻ Processes proposed to study the gluon TMD at hh colliders J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 13 / 20

  37. Processes proposed to study the gluon TMD at hh colliders ➐ gg ➐ � γγ : J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011) gg � ❼ J ⑦ ψ , Υ ➁ ✔ γ : W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014) gg � η c ✔ η c : G.P. Zhang, PRD 90 (2014) 9 094011 ➐ gg ➐ � H 0 ✔ jet : D. Boer, C. Pisano, PRD 91 (2015) 074024 gg � ❼ J ⑦ ψ , Υ ➁ ✔ Z ⑦ γ ❻ : JPL , C. Pisano, M. Schlegel, NPB 920 (2017) 192 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 13 / 20

  38. Processes proposed to study the gluon TMD at hh colliders ➐ gg ➐ � γγ : J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011) gg � ❼ J ⑦ ψ , Υ ➁ ✔ γ : W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014) gg � η c ✔ η c : G.P. Zhang, PRD 90 (2014) 9 094011 ➐ gg ➐ � H 0 ✔ jet : D. Boer, C. Pisano, PRD 91 (2015) 074024 gg � ❼ J ⑦ ψ , Υ ➁ ✔ Z ⑦ γ ❻ : JPL , C. Pisano, M. Schlegel, NPB 920 (2017) 192 None are measured so far ... J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 13 / 20

  39. Part IV Te case of quarkonium pair production in more details P 2 Φ ρσ g ( x 2 , k 2 T ) x 2 P 2 + k 2 T P Q , 1 ρ σ µ ν x 1 P 1 + k 1 T P Q , 2 Φ µν g ( x 1 , k 1 T ) P 1 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 14 / 20

  40. ⑦ ➸ � J ⑦ ψ ✔ J ⑦ ψ at low P ψψ T J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 15 / 20

  41. ➸ � J ⑦ ψ ✔ J ⑦ ψ at low P ψψ T J ⑦ ψ are relatively easy to detect. Already studied by LHCb, CMS & ATLAS at the LHC and D0 at the Tevatron LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPJC 77 (2017) 76; D0 PRD 90 (2014) 111101 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 15 / 20

  42. J ⑦ ψ ✔ J ⑦ ψ at low P ψψ T J ⑦ ψ are relatively easy to detect. Already studied by LHCb, CMS & ATLAS at the LHC and D0 at the Tevatron LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; ATLAS EPJC 77 (2017) 76; D0 PRD 90 (2014) 111101 Negligible q ¯ q contributions even at AFTER@LHC ( ➸ s � 115 GeV) energies J.P.L., H.S. Shao NPB 900 (2015) 273 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 15 / 20

  43. J ⑦ ψ ✔ J ⑦ ψ at low P ψψ T J ⑦ ψ are relatively easy to detect. Already LO SPS � smearing 1 NLO � SPS studied by LHCb, CMS & ATLAS at the � 8 � max ΨΨ � nb � GeV � 3 S 1 � 8 � � 3 S 1 10 � 1 � 8 � max � 8 � � 1 S 0 1 S 0 LHC and D0 at the Tevatron 10 � 2 LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; 10 � 3 ATLAS EPJC 77 (2017) 76; D0 PRD 90 (2014) 111101 d Σ � dP T 10 � 4 Negligible q ¯ q contributions even at AFTER@LHC ( ➸ s � 115 GeV) energies 10 � 5 7 TeV � LHC 10 � 6 CMS Accep. 10 � 7 J.P.L., H.S. Shao NPB 900 (2015) 273 0 10 20 30 40 ΨΨ � GeV � Negligible CO contributions, in particular at P T low P ψψ [black/dashed curves vs. blue] T JPL, H.S. Shao PLB 751 (2015) 479 No final state gluon needed for the Born contribution: pure colourless final state JPL, H.S. Shao PRL 111, 122001 (2013) J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 15 / 20

  44. J ⑦ ψ ✔ J ⑦ ψ at low P ψψ T J ⑦ ψ are relatively easy to detect. Already LO SPS � smearing 1 NLO � SPS studied by LHCb, CMS & ATLAS at the � 8 � max ΨΨ � nb � GeV � 3 S 1 � 8 � � 3 S 1 10 � 1 � 8 � max � 8 � � 1 S 0 1 S 0 LHC and D0 at the Tevatron 10 � 2 LHCb PLB 707 (2012) 52; JHEP 1706 (2017) 047; CMS JHEP 1409 (2014) 094; 10 � 3 ATLAS EPJC 77 (2017) 76; D0 PRD 90 (2014) 111101 d Σ � dP T 10 � 4 Negligible q ¯ q contributions even at AFTER@LHC ( ➸ s � 115 GeV) energies 10 � 5 7 TeV � LHC 10 � 6 CMS Accep. 10 � 7 J.P.L., H.S. Shao NPB 900 (2015) 273 0 10 20 30 40 ΨΨ � GeV � Negligible CO contributions, in particular at P T low P ψψ y [pb/0.3] [black/dashed curves vs. blue] ATLAS T -1 s = 8 TeV, 11.4 fb ± f = 9.2% 2.1% DPS JPL, H.S. Shao PLB 751 (2015) 479 10 Data ∆ /d DPS Estimate No final state gluon needed for the Born σ DPS Pred d . NLO* SPS+DPS Pred. contribution: pure colourless final state 1 JPL, H.S. Shao PRL 111, 122001 (2013) − 1 10 At low P ψψ T , small DPS effects, but DPS required by the CMS & ATLAS data at large ∆ y − 2 10 0 0.5 1 1.5 2 2.5 3 3.5 4 ∆ ψ ψ y(J/ ,J/ ) J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 15 / 20

  45. ❇ ❼ ➁ � � ◗ ✔ ◗ ◗ ❼ ➁ ❼ ➁ ◆ � ✏ ◗ ◗ � ✂ � ◗◗ ◗ ◗◗ ◗◗ � ◗◗ ⑦ ✟ What’s special about double vector onium production ? JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 16 / 20

  46. ❼ ➁ � � ◗ ✔ ◗ ◗ ❼ ➁ ❼ ➁ ◆ � ✏ ◗ ◗ � ✂ � ◗◗ ◗ ◗◗ ◗◗ � ◗◗ ⑦ ✟ What’s special about double vector onium production ? JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684 F 2,3,4 ❇ F 1 In general, the hard scattering coefficients are bounded : J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 16 / 20

  47. � ◗◗ ⑦ ✟ What’s special about double vector onium production ? JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684 F 2,3,4 ❇ F 1 In general, the hard scattering coefficients are bounded : gg � ◗ ✔ ◗ in the limit where M ψψ ◗ M ψ and cos ❼ θ CS ➁ � 0 : ◗ cos ❼ θ CS ➁ 2 ◗ cos ❼ θ CS ➁ 2 � 81 M 4 � ✏ 24 M 2 256 ◆ F 2 F 3 F 1 � ✂ F 4 , , M 4 ◗◗ M 2 2 M 4 M 2 F 1 F 1 ◗ ◗◗ ◗◗ J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 16 / 20

  48. What’s special about double vector onium production ? JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684 F 2,3,4 ❇ F 1 In general, the hard scattering coefficients are bounded : gg � ◗ ✔ ◗ in the limit where M ψψ ◗ M ψ and cos ❼ θ CS ➁ � 0 : ◗ cos ❼ θ CS ➁ 2 ◗ cos ❼ θ CS ➁ 2 � 81 M 4 � ✏ 24 M 2 256 ◆ F 2 F 3 F 1 � ✂ F 4 , , M 4 ◗◗ M 2 2 M 4 M 2 F 1 F 1 ◗ ◗◗ ◗◗ F 4 � F 1 at large M ◗◗ ✟ di- J ⑦ ψ (or di-Υ) maximise the observability of cos4 ϕ modulations in a kinematical region where data are already taken ! J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 16 / 20

  49. ✏ Ñ Ñ Ñ ➁ � ❼ ❼ ➁ ❵ ❡ ❵ ❡ ❼ ➁ ❵ ❡ ❈ � ✆ ⑦ ❼ ➁ ✟ ❈ � ✆ P ✟ TMD modelling : f g 1 and the relevance of the LHCb data JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 17 / 20

  50. ❼ ➁ ✟ ❈ � ✆ P ✟ TMD modelling : f g 1 and the relevance of the LHCb data JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684 k 2 ✏ Ñ T 1 modelled as a Gaussian in Ñ 1 ❼ x , Ñ f g k T : f g T ➁ � g ❼ x ➁ ❵ k 2 k 2 T ❡ T ❡ e π ❵ k 2 where g ❼ x ➁ is the usual collinear PDF First experimental determination [with a pure colorless final state] of ❵ k 2 T ❡ by fitting ❈ � f g 1 f g 1 ✆ over the normalised LHCb dσ ⑦ dP ψψ T spectrum at 13 TeV J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 17 / 20

  51. ❼ ➁ ✟ ❈ � ✆ P ✟ TMD modelling : f g 1 and the relevance of the LHCb data JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684 k 2 ✏ Ñ T 1 modelled as a Gaussian in Ñ 1 ❼ x , Ñ f g k T : f g T ➁ � g ❼ x ➁ ❵ k 2 k 2 T ❡ T ❡ e π ❵ k 2 where g ❼ x ➁ is the usual collinear PDF First experimental determination [with a pure colorless final state] of ❵ k 2 T ❡ by fitting ❈ � f g 1 f g 1 ✆ over the normalised LHCb dσ ⑦ dP ψψ T spectrum at 13 TeV <M ψψ > /2 d σ /dP ψψ T [GeV -1 ] 0.4 g , <k T 2 > fit Gaussian f 1 over [0 ;<M ψψ >/2] 0.3 LHCb data 0.2 <M ψψ > = 8 GeV 2 > = 4.9 ± 0.8 GeV 2 <k T d σ /dP ψψ T / ∫ 0 0.1 0 0 2 4 6 8 10 12 14 P ψψ T [GeV] J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 17 / 20

  52. TMD modelling : f g 1 and the relevance of the LHCb data JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684 k 2 ✏ Ñ T 1 modelled as a Gaussian in Ñ 1 ❼ x , Ñ f g k T : f g T ➁ � g ❼ x ➁ ❵ k 2 k 2 T ❡ T ❡ e π ❵ k 2 where g ❼ x ➁ is the usual collinear PDF First experimental determination [with a pure colorless final state] of ❵ k 2 T ❡ by fitting ❈ � f g 1 f g 1 ✆ over the normalised LHCb dσ ⑦ dP ψψ T spectrum at 13 TeV <M ψψ > /2 d σ /dP ψψ T [GeV -1 ] 0.4 Integration over g , <k T 2 > fit Gaussian f 1 ϕ ✟ cos ❼ nϕ ➁ -terms cancel out over [0 ;<M ψψ >/2] 0.3 F 2 P F 1 ✟ only ❈ � f g 1 f g 1 ✆ LHCb data contributes to the cross-section 0.2 <M ψψ > = 8 GeV No evolution so far 2 > = 4.9 ± 0.8 GeV 2 <k T d σ /dP ψψ T / ∫ 0 0.1 Room lef for DPS 0 0 2 4 6 8 10 12 14 P ψψ T [GeV] J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 17 / 20

  53. Modelling h Ù g 1 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 18 / 20

  54. Modelling h Ù g 1 1 ◮ ”Gaussian” h ⊥ g 1 ( x ,� k 2 T ) ⇒ Model 1 Boer, de Dunnen, Pisano, Schlegel, Vogelsang, PRL 108 (2012) 032002 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 18 / 20 Florent Scarpa Gluon TMDs & J /ψ -pair production 10 / 13

  55. Modelling h Ù g 1 1 ◮ ”Gaussian” h ⊥ g 1 ( x ,� k 2 T ) ⇒ Model 1 Boer, de Dunnen, Pisano, Schlegel, Vogelsang, PRL 108 (2012) 032002 T ) ≤ 2 M 2 ◮ Positivity bound : h ⊥ g 1 ( x ,� k 2 p f g 1 ( x ,� k 2 T ) = maximal value � k 2 T (bound saturated) ⇒ Model 2 supported by low-x computations J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 18 / 20 Florent Scarpa Gluon TMDs & J /ψ -pair production 10 / 13

  56. Modelling h Ù g 1 1 ◮ ”Gaussian” h ⊥ g 1 ( x ,� k 2 T ) ⇒ Model 1 Boer, de Dunnen, Pisano, Schlegel, Vogelsang, PRL 108 (2012) 032002 T ) ≤ 2 M 2 ◮ Positivity bound : h ⊥ g 1 ( x ,� k 2 p f g 1 ( x ,� k 2 T ) = maximal value � k 2 T (bound saturated) ⇒ Model 2 supported by low-x computations ⊥ g h 1 ⊥ g : Model 1 g h 1 ⊥ g : Model 1 ⊥ g h 1 ⊥ g : Model 1 w 2 h 1 − w 3 f 1 w 4 h 1 Model 2 Model 2 Model 2 1 g ] g f 1 C[w TMD 1 TMD 2 ] / C[f 1 0.8 0.6 2 > = 4.9 GeV 2 <k T 0.4 0.2 0 -0.2 0 5 10 15 20 P ψψ T [GeV] J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 18 / 20 Florent Scarpa Gluon TMDs & J /ψ -pair production 10 / 13

  57. Expected azimuthal asymmetries JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 19 / 20

  58. Expected azimuthal asymmetries JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684 � 2 π d φ CS cos n φ CS d σ 0 � cos n φ CS � = n = 0 , 2 , 4 (7) � 2 π d φ CS d σ 0 = relative amplitude of the azimuthal modulations J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 19 / 20 Florent Scarpa Gluon TMDs & J /ψ -pair production 11 / 13

  59. Expected azimuthal asymmetries JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684 � 2 π d φ CS cos n φ CS d σ 0 � cos n φ CS � = n = 0 , 2 , 4 (7) � 2 π d φ CS d σ 0 = relative amplitude of the azimuthal modulations 60 0 Model 1 M ψψ = 8 GeV <cos 4 φ CS > [in /%] 50 <cos 2 φ CS > [in %] Model 2 -2 2 > = 4.9 GeV 2 M ψψ = 21 GeV <k T 40 M ψψ = 21 GeV |cos θ CS | < 0.25 30 -4 Model 1 20 Model 2 -6 10 2 > = 4.9 GeV 2 M ψψ = 12 GeV M ψψ = 12 GeV <k T |cos θ CS | < 0.25 M ψψ = 8 GeV -8 0 0 2 4 6 8 10 0 2 4 6 8 10 P ψψ T [GeV] P ψψ T [GeV] ◮ cos 4 φ -modulations up to 50% ! J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 19 / 20 Florent Scarpa Gluon TMDs & J /ψ -pair production 11 / 13

  60. Expected azimuthal asymmetries JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684 5 0 M ψψ = 8 GeV M ψψ = 8 GeV -5 0 <cos 2 φ CS > [in %] <cos 4 φ CS > [in /%] M ψψ = 12 GeV M ψψ = 21 GeV -10 -5 -15 -10 Model 1 Model 1 -20 -15 Model 2 Model 2 M ψψ = 21 GeV -25 -20 2 > = 4.9 GeV 2 M ψψ = 12 GeV 2 > = 4.9 GeV 2 <k T <k T -30 0.25 < |cos θ CS | < 0.5 0.25 < |cos θ CS | < 0.5 -25 -35 0 2 4 6 8 10 0 2 4 6 8 10 P ψψ T [GeV] P ψψ T [GeV] J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 19 / 20 Florent Scarpa Gluon TMDs & J /ψ -pair production 12 / 13

  61. Expected azimuthal asymmetries JPL, C. Pisano, F. Scarpa, M. Schlegel, arXiv:1710.01684 5 0 M ψψ = 8 GeV M ψψ = 8 GeV -5 0 <cos 2 φ CS > [in %] <cos 4 φ CS > [in /%] M ψψ = 12 GeV M ψψ = 21 GeV -10 -5 -15 -10 Model 1 Model 1 -20 -15 Model 2 Model 2 M ψψ = 21 GeV -25 -20 2 > = 4.9 GeV 2 M ψψ = 12 GeV 2 > = 4.9 GeV 2 <k T <k T -30 0.25 < |cos θ CS | < 0.5 0.25 < |cos θ CS | < 0.5 -25 -35 0 2 4 6 8 10 0 2 4 6 8 10 P ψψ T [GeV] P ψψ T [GeV] ◮ � cos 2 φ CS � reaches 30% ⇒ important to determine the sign of h ⊥ g 1 ◮ � cos 4 φ CS � changes sign ⇒ one must be careful when integrating over the phase space J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 19 / 20 Florent Scarpa Gluon TMDs & J /ψ -pair production 12 / 13

  62. ⑦ ⑦ ✔ ✔ Ù ❼ ❼ ➁ ➁ � ⑦ ◗ ◗ ✔ ◗ ✔ ◗ ⑦ ✔ Conclusions and Outlooks Unpolarised TMD studies in the gluon sector are very promising J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 20 / 20

  63. ⑦ ⑦ ✔ ✔ Ù ❼ ❼ ➁ ➁ � ⑦ ◗ ◗ ✔ ◗ ✔ ◗ ⑦ ✔ Conclusions and Outlooks Unpolarised TMD studies in the gluon sector are very promising With lepton beams, only possible at an EIC J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 20 / 20

  64. ⑦ ⑦ ✔ ✔ Ù ❼ ❼ ➁ ➁ � ⑦ ◗ ◗ ✔ ◗ ✔ ◗ ⑦ ✔ Conclusions and Outlooks Unpolarised TMD studies in the gluon sector are very promising With lepton beams, only possible at an EIC If we don’t want to wait for 10 years, LHC can help, right now ! J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 20 / 20

  65. ⑦ ✔ ✔ Ù ❼ ❼ ➁ ➁ � ⑦ ◗ ◗ ✔ ◗ ✔ ◗ ⑦ ✔ Conclusions and Outlooks Unpolarised TMD studies in the gluon sector are very promising With lepton beams, only possible at an EIC If we don’t want to wait for 10 years, LHC can help, right now ! Low P T η c production [below M η c ⑦ 2] is highly challenging, however NLO-NNLL pheno study available soon J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 20 / 20

  66. ◗ ◗ ✔ ◗ ✔ ◗ ⑦ ✔ Conclusions and Outlooks Unpolarised TMD studies in the gluon sector are very promising With lepton beams, only possible at an EIC If we don’t want to wait for 10 years, LHC can help, right now ! Low P T η c production [below M η c ⑦ 2] is highly challenging, however NLO-NNLL pheno study available soon Back-to-back J ⑦ ψ ✔ γ or Υ ✔ γ is certainly at reach [events already on tapes] f g 1 ❼ x , k T , µ ➁ and h Ù g 1 ❼ x , k T , µ ➁ can be determined separately Q can even be tuned � gluon TMD evolution Back-to-back J ⑦ ψ pair already measured J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 20 / 20

  67. ◗ ◗ ✔ ◗ ✔ ◗ ⑦ ✔ Conclusions and Outlooks Unpolarised TMD studies in the gluon sector are very promising With lepton beams, only possible at an EIC If we don’t want to wait for 10 years, LHC can help, right now ! Low P T η c production [below M η c ⑦ 2] is highly challenging, however NLO-NNLL pheno study available soon Back-to-back J ⑦ ψ ✔ γ or Υ ✔ γ is certainly at reach [events already on tapes] f g 1 ❼ x , k T , µ ➁ and h Ù g 1 ❼ x , k T , µ ➁ can be determined separately Q can even be tuned � gluon TMD evolution Back-to-back J ⑦ ψ pair already measured Back-to-back vector onium pair: largest possible cos4 ϕ modulations ! J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 20 / 20

  68. ◗ ◗ ✔ ◗ ✔ ◗ ⑦ ✔ Conclusions and Outlooks Unpolarised TMD studies in the gluon sector are very promising With lepton beams, only possible at an EIC If we don’t want to wait for 10 years, LHC can help, right now ! Low P T η c production [below M η c ⑦ 2] is highly challenging, however NLO-NNLL pheno study available soon Back-to-back J ⑦ ψ ✔ γ or Υ ✔ γ is certainly at reach [events already on tapes] f g 1 ❼ x , k T , µ ➁ and h Ù g 1 ❼ x , k T , µ ➁ can be determined separately Q can even be tuned � gluon TMD evolution Back-to-back J ⑦ ψ pair already measured Back-to-back vector onium pair: largest possible cos4 ϕ modulations ! Gluon Sivers effect uncovered by COMPASS ; not small COMPASS arXiv:1701.02453 See also D. Boer, C. Lorc´ e, C. Pisano, J. Zhou, Adv.High Energy Phys. 2015 (2015) 371396 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 20 / 20

  69. ⑦ ✔ Conclusions and Outlooks Unpolarised TMD studies in the gluon sector are very promising With lepton beams, only possible at an EIC If we don’t want to wait for 10 years, LHC can help, right now ! Low P T η c production [below M η c ⑦ 2] is highly challenging, however NLO-NNLL pheno study available soon Back-to-back J ⑦ ψ ✔ γ or Υ ✔ γ is certainly at reach [events already on tapes] f g 1 ❼ x , k T , µ ➁ and h Ù g 1 ❼ x , k T , µ ➁ can be determined separately Q can even be tuned � gluon TMD evolution Back-to-back J ⑦ ψ pair already measured Back-to-back vector onium pair: largest possible cos4 ϕ modulations ! Gluon Sivers effect uncovered by COMPASS ; not small COMPASS arXiv:1701.02453 See also D. Boer, C. Lorc´ e, C. Pisano, J. Zhou, Adv.High Energy Phys. 2015 (2015) 371396 Low P T ◗ , ◗ ✔ γ , ◗ ✔ ◗ STSA precision studies are possible with A Fixed-Target Experiment at the LHC: AFTER@LHC D. Kikola et al. Few Body Syst. 58 (2017) 139 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 20 / 20

  70. Conclusions and Outlooks Unpolarised TMD studies in the gluon sector are very promising With lepton beams, only possible at an EIC If we don’t want to wait for 10 years, LHC can help, right now ! Low P T η c production [below M η c ⑦ 2] is highly challenging, however NLO-NNLL pheno study available soon Back-to-back J ⑦ ψ ✔ γ or Υ ✔ γ is certainly at reach [events already on tapes] f g 1 ❼ x , k T , µ ➁ and h Ù g 1 ❼ x , k T , µ ➁ can be determined separately Q can even be tuned � gluon TMD evolution Back-to-back J ⑦ ψ pair already measured Back-to-back vector onium pair: largest possible cos4 ϕ modulations ! Gluon Sivers effect uncovered by COMPASS ; not small COMPASS arXiv:1701.02453 See also D. Boer, C. Lorc´ e, C. Pisano, J. Zhou, Adv.High Energy Phys. 2015 (2015) 371396 Low P T ◗ , ◗ ✔ γ , ◗ ✔ ◗ STSA precision studies are possible with A Fixed-Target Experiment at the LHC: AFTER@LHC D. Kikola et al. Few Body Syst. 58 (2017) 139 J ⑦ ψ ✔ γ STSA study might also be possible with STAR in very favourable conditions JPL, C. Pisano, M. Schlegel, in progress J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 20 / 20

  71. Part V Backup J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 21 / 20

  72. ❙ ❼ ➁ ❙ ❼ ➁ ① ✟ ❈ � ✆ ❙ ❼ ➁ � Ù ❘ ❈ � ✆ Ù ✔ ❈ � ✆ ❙ ❼ ➁ � ✏ ❘ ❈ � ✆ Ù ✆ Ù ❙ ❼ ➁ � ❈ � ❘ ❈ � ✆ ✏ ✏ ▲ ✟ ✏ ✏ ❙ ❼ ➁ � ❾ ➃ ❼ ➁ ❘ ◗ ✔ γ at low P ψ ✏ γ T W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014) Q Unique candidate to pin down the gluon TMDs γ J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 22 / 20

  73. ❙ ❼ ➁ ❙ ❼ ➁ ① ✟ ❈ � ✆ ❙ ❼ ➁ � Ù ❘ ❈ � ✆ Ù ✔ ❈ � ✆ ❙ ❼ ➁ � ✏ ❘ ❈ � ✆ Ù ✆ Ù ❙ ❼ ➁ � ❈ � ❘ ❈ � ✆ ▲ ✟ ✏ ✏ ❙ ❼ ➁ � ❾ ➃ ❼ ➁ ❘ ◗ ✔ γ at low P ψ ✏ γ T W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014) Q Unique candidate to pin down the gluon TMDs Hard scale M ψ ✏ γ (or Q ψ ✏ γ ) can be tuned γ J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 22 / 20

  74. ❙ ❼ ➁ ❙ ❼ ➁ ① ✟ ❈ � ✆ ❙ ❼ ➁ � Ù ❘ ❈ � ✆ Ù ✔ ❈ � ✆ ❙ ❼ ➁ � ✏ ❘ ❈ � ✆ Ù ✆ Ù ❙ ❼ ➁ � ❈ � ❘ ❈ � ✆ ▲ ✟ ✏ ✏ ❙ ❼ ➁ � ❾ ➃ ❼ ➁ ❘ ◗ ✔ γ at low P ψ ✏ γ T W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014) Q Unique candidate to pin down the gluon TMDs Hard scale M ψ ✏ γ (or Q ψ ✏ γ ) can be tuned γ gluon sensitive process [even at large x F (AFTER@LHC)] J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 22 / 20

  75. ❙ ❼ ➁ ❙ ❼ ➁ ① ✟ ❈ � ✆ ❙ ❼ ➁ � Ù ❘ ❈ � ✆ Ù ✔ ❈ � ✆ ❙ ❼ ➁ � ✏ ❘ ❈ � ✆ Ù ✆ Ù ❙ ❼ ➁ � ❈ � ❘ ❈ � ✆ ✏ ❙ ❼ ➁ � ❾ ➃ ❼ ➁ ❘ ◗ ✔ γ at low P ψ ✏ γ T W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014) Q Unique candidate to pin down the gluon TMDs Hard scale M ψ ✏ γ (or Q ψ ✏ γ ) can be tuned γ gluon sensitive process [even at large x F (AFTER@LHC)] With the ▲ ✟ 20 f ✏ 1 of pp data on tape, one expects up to 2000 events J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 22 / 20

  76. ❙ ❼ ➁ ❙ ❼ ➁ ① ✟ ❈ � ✆ ❙ ❼ ➁ � Ù ❘ ❈ � ✆ Ù ✔ ❈ � ✆ ❙ ❼ ➁ � ✏ ❘ ❈ � ✆ Ù ✆ Ù ❙ ❼ ➁ � ❈ � ❘ ❈ � ✆ ◗ ✔ γ at low P ψ ✏ γ T W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014) Q Unique candidate to pin down the gluon TMDs Hard scale M ψ ✏ γ (or Q ψ ✏ γ ) can be tuned γ gluon sensitive process [even at large x F (AFTER@LHC)] With the ▲ ✟ 20 f ✏ 1 of pp data on tape, one expects up to 2000 events ✏ 1 We define: ❙ ❼ n ➁ q T � ❾ d Q d Y d cos θ CS ➃ ❘ d ϕ CS π cos ❼ nϕ CS ➁ d σ d σ d Q d Y d 2 q T dΩ J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 22 / 20

  77. ◗ ✔ γ at low P ψ ✏ γ T W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014) Q Unique candidate to pin down the gluon TMDs Hard scale M ψ ✏ γ (or Q ψ ✏ γ ) can be tuned γ gluon sensitive process [even at large x F (AFTER@LHC)] With the ▲ ✟ 20 f ✏ 1 of pp data on tape, one expects up to 2000 events ✏ 1 We define: ❙ ❼ n ➁ q T � ❾ d Q d Y d cos θ CS ➃ ❘ d ϕ CS π cos ❼ nϕ CS ➁ d σ d σ d Q d Y d 2 q T dΩ ❈ � f g 1 f g ❙ ❼ 0 ➁ 1 ✆ 1 ✆ : does not involve h Ù g [not always the case] q T � T ❈ � f g 1 f g ❘ d q 2 1 F 3 ❈ � w fh 2 f g 1 h Ù g 1 ✔ x 1 ✏ x 2 ✆ ❙ ❼ 2 ➁ q T � T ❈ � f g 1 f g 2 F 1 ❘ d q 2 1 ✆ F 4 ❈ � w hh 4 h Ù g 1 h Ù g ❙ ❼ 4 ➁ 1 ✆ q T � T ❈ � f g 1 f g 2 F 1 ❘ d q 2 1 ✆ ❙ ❼ 2 ➁ q T , ❙ ❼ 4 ➁ q T ① 0 ✟ nonzero gluon polarisation in unpolarised protons ! J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 22 / 20

  78. ❙ ❼ ➁ ❘ ❙ ❼ ➁ ❖ ❼ ✏ ➁ ❙ ❼ ➁ ❙ ❼ ➁ Results with UGDs as Ans¨ atze for TMDs W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014) � 0 � � GeV � 2 � S q T Set B 0.100 KMR 0.050 CGC Gaussian 0.020 0.010 0.005 q T � GeV � 2 4 6 8 10 1 ❼ x , k T ➁ from the q T -dependence of the yield. ❙ ❼ 0 ➁ q T : f g J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 23 / 20

  79. ❙ ❼ ➁ ❙ ❼ ➁ Results with UGDs as Ans¨ atze for TMDs W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014) � 0 � � GeV � 2 � S q T Set B 0.100 KMR 0.050 CGC Gaussian 0.020 0.010 0.005 q T � GeV � 2 4 6 8 10 � 2 � � GeV � 2 � � 4 � � GeV � 2 � S q T S q T q T � GeV � Set B � max 2 4 6 8 10 0.0004 KMR � max � 0.0002 0.0003 CGC � 0.0004 Set B � max 0.0002 Gaussian � max KMR � max � 0.0006 0.0001 CGC � 0.0008 Gaussian � max q T � GeV � � 0.0010 2 4 6 8 10 1 ❼ x , k T ➁ from the q T -dependence of the yield. ❙ ❼ 0 ➁ q T : f g ❙ ❼ 4 ➁ q T : ❘ dq T ❙ ❼ 4 ➁ q T should be measurable [ ❖ ❼ 1 ✏ 2% ➁ : ok with 2000 events] J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 23 / 20

  80. Results with UGDs as Ans¨ atze for TMDs W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014) � 0 � � GeV � 2 � S q T Set B 0.100 KMR 0.050 CGC Gaussian 0.020 0.010 0.005 q T � GeV � 2 4 6 8 10 � 2 � � GeV � 2 � � 4 � � GeV � 2 � S q T S q T q T � GeV � Set B � max 2 4 6 8 10 0.0004 KMR � max � 0.0002 0.0003 CGC � 0.0004 Set B � max 0.0002 Gaussian � max KMR � max � 0.0006 0.0001 CGC � 0.0008 Gaussian � max q T � GeV � � 0.0010 2 4 6 8 10 1 ❼ x , k T ➁ from the q T -dependence of the yield. ❙ ❼ 0 ➁ q T : f g ❙ ❼ 4 ➁ q T : ❘ dq T ❙ ❼ 4 ➁ q T should be measurable [ ❖ ❼ 1 ✏ 2% ➁ : ok with 2000 events] ❙ ❼ 2 ➁ q T : slightly larger than ❙ ❼ 4 ➁ q T J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 23 / 20

  81. ◗ ✔ ⑦ ✔ J ⑦ ψ ⑦ Υ ✔ Z Extending to J ⑦ ψ ⑦ Υ ✔ Z Rates similar for Υ ✔ Z and J ⑦ ψ ✔ Z [Same for ◗ ✔ γ for Q à 20 GeV] B. Gong, J.P. Lansberg, C. Lorc´ e, J.X. Wang, JHEP 1303 (2013) 115 Q Z J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 24 / 20

  82. ◗ ✔ ⑦ ✔ J ⑦ ψ ⑦ Υ ✔ Z Extending to J ⑦ ψ ⑦ Υ ✔ Z Rates similar for Υ ✔ Z and J ⑦ ψ ✔ Z [Same for ◗ ✔ γ for Q à 20 GeV] B. Gong, J.P. Lansberg, C. Lorc´ e, J.X. Wang, JHEP 1303 (2013) 115 Q 1 NLO d σ /dP T x Br (fb/GeV) 0.1 NLO 0.1 LO Z d σ /dP T x Br (fb/GeV) LO 0.01 0.01 0.001 0.001 0.0001 0.0001 sqrt(s)=8 TeV sqrt(s)=8 TeV µ R = µ F =m Z 1e-05 1e-05 µ R = µ F =m Z |y ϒ | < 2.4 1e-06 |y J/ ψ | < 2.4 1e-06 1e-07 0 25 50 75 100 125 150 25 50 75 100 125 150 P ϒ J/ ψ (GeV) T (GeV) P T J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 24 / 20

  83. ◗ ✔ ⑦ ✔ J ⑦ ψ ⑦ Υ ✔ Z Extending to J ⑦ ψ ⑦ Υ ✔ Z Rates similar for Υ ✔ Z and J ⑦ ψ ✔ Z [Same for ◗ ✔ γ for Q à 20 GeV] B. Gong, J.P. Lansberg, C. Lorc´ e, J.X. Wang, JHEP 1303 (2013) 115 Q 1 NLO d σ /dP T x Br (fb/GeV) 0.1 NLO 0.1 LO Z d σ /dP T x Br (fb/GeV) LO 0.01 0.01 0.001 0.001 0.0001 0.0001 sqrt(s)=8 TeV sqrt(s)=8 TeV µ R = µ F =m Z 1e-05 1e-05 µ R = µ F =m Z |y ϒ | < 2.4 1e-06 |y J/ ψ | < 2.4 1e-06 1e-07 0 25 50 75 100 125 150 25 50 75 100 125 150 P ϒ J/ ψ (GeV) T (GeV) P T Potential probe of gluon TMDs as well J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 24 / 20

  84. ⑦ ✔ J ⑦ ψ ⑦ Υ ✔ Z Extending to J ⑦ ψ ⑦ Υ ✔ Z Rates similar for Υ ✔ Z and J ⑦ ψ ✔ Z [Same for ◗ ✔ γ for Q à 20 GeV] B. Gong, J.P. Lansberg, C. Lorc´ e, J.X. Wang, JHEP 1303 (2013) 115 Q 1 NLO d σ /dP T x Br (fb/GeV) 0.1 NLO 0.1 LO Z d σ /dP T x Br (fb/GeV) LO 0.01 0.01 0.001 0.001 0.0001 0.0001 sqrt(s)=8 TeV sqrt(s)=8 TeV µ R = µ F =m Z 1e-05 1e-05 µ R = µ F =m Z |y ϒ | < 2.4 1e-06 |y J/ ψ | < 2.4 1e-06 1e-07 0 25 50 75 100 125 150 25 50 75 100 125 150 P ϒ J/ ψ (GeV) T (GeV) P T Potential probe of gluon TMDs as well Rate clearly smaller than ◗ ✔ γ even at low P T ; but much better detectability J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 24 / 20

  85. J ⑦ ψ ⑦ Υ ✔ Z Extending to J ⑦ ψ ⑦ Υ ✔ Z Rates similar for Υ ✔ Z and J ⑦ ψ ✔ Z [Same for ◗ ✔ γ for Q à 20 GeV] B. Gong, J.P. Lansberg, C. Lorc´ e, J.X. Wang, JHEP 1303 (2013) 115 Q 1 NLO d σ /dP T x Br (fb/GeV) 0.1 NLO 0.1 LO Z d σ /dP T x Br (fb/GeV) LO 0.01 0.01 0.001 0.001 0.0001 0.0001 sqrt(s)=8 TeV sqrt(s)=8 TeV µ R = µ F =m Z 1e-05 1e-05 µ R = µ F =m Z |y ϒ | < 2.4 1e-06 |y J/ ψ | < 2.4 1e-06 1e-07 0 25 50 75 100 125 150 25 50 75 100 125 150 P ϒ J/ ψ (GeV) T (GeV) P T Potential probe of gluon TMDs as well Rate clearly smaller than ◗ ✔ γ even at low P T ; but much better detectability First measurement of J ⑦ ψ ✔ Z by ATLAS; large DPS yield : unequal p T cuts ? ATLAS EPJC 75 (2015) 229 ; J.P.L., H.S. Shao JHEP 1610 (2016) 153 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 24 / 20

  86. ❘ ❙ ❼ ➁ ✂ ❘ ❙ ❼ ➁ ✂ � ❘ ❙ ❼ ➁ ✂ ❘ ❙ ❼ ➁ ✂ � ❘ ❙ ❼ ➁ ✂ ❘ ❙ ❼ ➁ ✂ � ❙ ❼ ➁ ◗ ✔ J ⑦ ψ ⑦ Υ ✔ Z Υ ✔ Z & Υ ✔ γ ❺ @ ➸ s � 14 TeV JPL, C. Pisano, M. Schlegel, NPB 920 (2017) 192 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 25 / 20

  87. ❘ ❙ ❼ ➁ ✂ ❘ ❙ ❼ ➁ ✂ � ❘ ❙ ❼ ➁ ✂ ❘ ❙ ❼ ➁ ✂ � J ⑦ ψ ⑦ Υ ✔ Z Υ ✔ Z & Υ ✔ γ ❺ @ ➸ s � 14 TeV JPL, C. Pisano, M. Schlegel, NPB 920 (2017) 192 Q � 120 GeV : Z on-shell [ ❘ ❙ ❼ 2 ➁ ✂ 0.007%; ❘ ❙ ❼ 4 ➁ ✂ 0.001%] S ( 0 ) [ GeV - 2 ] S ( 4 ) [ GeV - 2 ] S ( 2 ) [ GeV - 2 ] 0.0025 1.2 × 10 - 8 Set B Set B + max 40q T [ GeV ] 0.0020 1. × 10 - 8 10 20 30 KMR KMR + max 8. × 10 - 9 0.0015 - 2. × 10 - 8 6. × 10 - 9 0.0010 - 4. × 10 - 8 4. × 10 - 9 0.0005 Set B + max 2. × 10 - 9 - 6. × 10 - 8 KMR + max 40q T [ GeV ] 40 q T [ GeV ] 10 20 30 10 20 30 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 25 / 20 ❙ ❼ ➁ ◗ ✔

  88. ❘ ❙ ❼ ➁ ✂ ❘ ❙ ❼ ➁ ✂ � J ⑦ ψ ⑦ Υ ✔ Z Υ ✔ Z & Υ ✔ γ ❺ @ ➸ s � 14 TeV JPL, C. Pisano, M. Schlegel, NPB 920 (2017) 192 Q � 120 GeV : Z on-shell [ ❘ ❙ ❼ 2 ➁ ✂ 0.007%; ❘ ❙ ❼ 4 ➁ ✂ 0.001%] S ( 0 ) [ GeV - 2 ] S ( 4 ) [ GeV - 2 ] S ( 2 ) [ GeV - 2 ] 0.0025 1.2 × 10 - 8 Set B Set B + max 40q T [ GeV ] 0.0020 1. × 10 - 8 10 20 30 KMR KMR + max 8. × 10 - 9 0.0015 - 2. × 10 - 8 6. × 10 - 9 0.0010 - 4. × 10 - 8 4. × 10 - 9 0.0005 Set B + max 2. × 10 - 9 - 6. × 10 - 8 KMR + max 40q T [ GeV ] 40 q T [ GeV ] 10 20 30 10 20 30 Q � 20 GeV & dilepton mass [5:7] GeV [ ❘ ❙ ❼ 2 ➁ ✂ 0.5%; ❘ ❙ ❼ 4 ➁ ✂ 0.05%] S ( 0 ) [ GeV - 2 ] S ( 4 ) [ GeV - 2 ] S ( 2 ) [ GeV - 2 ] 0.025 5. × 10 - 6 q T [ GeV ] Set B 1 2 3 4 5 6 0.020 4. × 10 - 6 KMR - 0.00002 Set B + max Set B + max 0.015 3. × 10 - 6 KMR + max KMR + max 0.010 - 0.00004 2. × 10 - 6 0.005 1. × 10 - 6 - 0.00006 10q T [ GeV ] q T [ GeV ] 2 4 6 8 - 0.00008 1 2 3 4 5 6 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 25 / 20 ❙ ❼ ➁ ◗ ✔

  89. J ⑦ ψ ⑦ Υ ✔ Z Υ ✔ Z & Υ ✔ γ ❺ @ ➸ s � 14 TeV JPL, C. Pisano, M. Schlegel, NPB 920 (2017) 192 Q � 120 GeV : Z on-shell [ ❘ ❙ ❼ 2 ➁ ✂ 0.007%; ❘ ❙ ❼ 4 ➁ ✂ 0.001%] S ( 0 ) [ GeV - 2 ] S ( 4 ) [ GeV - 2 ] S ( 2 ) [ GeV - 2 ] 0.0025 1.2 × 10 - 8 Set B Set B + max 40q T [ GeV ] 0.0020 1. × 10 - 8 10 20 30 KMR KMR + max 8. × 10 - 9 0.0015 - 2. × 10 - 8 6. × 10 - 9 0.0010 - 4. × 10 - 8 4. × 10 - 9 0.0005 Set B + max 2. × 10 - 9 - 6. × 10 - 8 KMR + max 40q T [ GeV ] 40 q T [ GeV ] 10 20 30 10 20 30 Q � 20 GeV & dilepton mass [5:7] GeV [ ❘ ❙ ❼ 2 ➁ ✂ 0.5%; ❘ ❙ ❼ 4 ➁ ✂ 0.05%] S ( 0 ) [ GeV - 2 ] S ( 4 ) [ GeV - 2 ] S ( 2 ) [ GeV - 2 ] 0.025 5. × 10 - 6 q T [ GeV ] Set B 1 2 3 4 5 6 0.020 4. × 10 - 6 KMR - 0.00002 Set B + max Set B + max 0.015 3. × 10 - 6 KMR + max KMR + max 0.010 - 0.00004 2. × 10 - 6 0.005 1. × 10 - 6 - 0.00006 10q T [ GeV ] q T [ GeV ] 2 4 6 8 - 0.00008 1 2 3 4 5 6 Q � 40 GeV & dilepton mass [20:25] GeV [ ❘ ❙ ❼ 2 ➁ ✂ 0.15%; ❘ ❙ ❼ 4 ➁ ✂ 0.01%] S ( 0 ) [ GeV - 2 ] S ( 4 ) [ GeV - 2 ] S ( 2 ) [ GeV - 2 ] 5. × 10 - 7 q T [ GeV ] 0.008 Set B 2 4 6 8 10 12 - 1. × 10 - 6 4. × 10 - 7 KMR Set B + max 0.006 - 2. × 10 - 6 3. × 10 - 7 KMR + max - 3. × 10 - 6 0.004 2. × 10 - 7 - 4. × 10 - 6 Set B + max 0.002 - 5. × 10 - 6 1. × 10 - 7 KMR + max - 6. × 10 - 6 20q T [ GeV ] q T [ GeV ] 5 10 15 - 7. × 10 - 6 2 4 6 8 10 12 J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 25 / 20 ❙ ❼ ➁ ◗ ✔

  90. J ⑦ ψ ⑦ Υ ✔ Z Υ ✔ γ already measured ? week ending P H Y S I C A L R E V I E W L E T T E R S PRL 114, 121801 (2015) 27 MARCH 2015 Search for Higgs and Z Boson Decays to J = ψγ and ϒ ð nS Þ γ with the ATLAS Detector G. Aad et al. * (ATLAS Collaboration) (Received 15 January 2015; published 26 March 2015) A search for the decays of the Higgs and Z bosons to J= ψγ and ϒ ð nS Þ γ ( n ¼ 1 ; 2 ; 3 ) is performed with pp collision data samples corresponding to integrated luminosities of up to 20 . 3 fb − 1 collected at p ¼ 8 TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events ffiffi s ffi is observed above expected backgrounds and 95% C.L. upper limits are placed on the branching fractions. In the J= ψγ final state the limits are 1 . 5 × 10 − 3 and 2 . 6 × 10 − 6 for the Higgs and Z boson decays, respectively, while in the ϒ ð 1 S; 2 S; 3 S Þ γ final states the limits are ð 1 . 3 ; 1 . 9 ; 1 . 3 Þ × 10 − 3 and ð 3 . 4 ; 6 . 5 ; 5 . 4 Þ × 10 − 6 , respectively. Events / 4 GeV Events / 4 GeV Events / 0.125 GeV ATLAS ATLAS 35 ATLAS 80 50 ∫ -1 ∫ -1 ∫ -1 s =8 TeV Ldt = 20.3 fb s =8 TeV Ldt = 20.3 fb s =8 TeV Ldt = 20.3 fb 70 30 Data Data Data S+B Fit S+B Fit S+B Fit 40 Combinatoric Combinatoric Combinatoric 60 ϒ ϒ 25 ϒ (nS) (nS) (nS) Z FSR Z FSR Z FSR 50 -3 -3 -3 H [B=10 ] H [B=10 ] H [B=10 ] 30 -6 -6 20 -6 Z [B=10 ] Z [B=10 ] Z [B=10 ] 40 15 20 30 10 20 10 5 10 0 0 40 80 120 160 200 0 50 100 150 200 8 8.5 9 9.5 10 10.5 11 11.5 12 µ µ γ m [GeV] p [GeV] m [GeV] µ µ γ µ µ T J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 26 / 20

  91. ❃ � ✏ ✂ ✆ � ✏ à ✔ � ⑦ ➁ ✟ ✏ ✕ ✏ ✏ ✟ ✟ ❆ ❼ J ⑦ ψ ⑦ Υ ✔ Z Same at AFTER@LHC AFTER@LHC : a fixed-target experiment using the LHC beams ➺ 2 ✕ m N ✕ E p 7 TeV 115 GeV � J.P. Lansberg (IPNO) Gluon TMD studies using quarkonia November 16, 2017 27 / 20

Recommend


More recommend