parameters using fourier analysis
play

Parameters using Fourier Analysis Alban Fichet Imari Sato Nicolas - PowerPoint PPT Presentation

Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis Alban Fichet Imari Sato Nicolas Holzschuch Inria Univ Grenoble Alpes LJK CNRS Inria Univ Grenoble Alpes LJK CNRS National Institute of


  1. Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis Alban Fichet Imari Sato Nicolas Holzschuch Inria – Univ Grenoble Alpes – LJK – CNRS Inria – Univ Grenoble Alpes – LJK – CNRS National Institute of Informatics alban.fichet@inria.fr imarik@nii.ac.jp nicolas.holzschuch@inria.fr

  2. Representing opaque materials • BRDF - 4D function: • Incoming light (elevation θ i & azimuth φ i ) • Observation point (elevation θ o & azimuth φ o ) • Spatially varying material SVBRDF: • + 2 dimensions: u, v Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 3

  3. Representing opaque materials Diffuse component Anisotropy direction Roughness α x α y Specular component Anisotropic highlight Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 4

  4. Representing opaque materials Diffuse Specular Shading Anisotropy Roughness normal direction α x / α y ( α x + α y )/2 3 dimensions: 3 dimensions: 2 dimensions: 1 dimension: 2 dimensions: • • Elevation θ n Direction φ a Horizontal α x Red Red • • • • • Green Green Azimuth φ n Vertical α y • • • • Blue Blue Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 5

  5. Related work BRDF acquisition Spatially Varying BRDF Capture under varying Gathering sparse and illumination dense measurements [ Matusik et al – 2003 ] [ Gardner et al – 2003 ] [ Ren et al – 2011 ] Isotropic [ Holroyd et al – 2010 ] [ Ngan et al – 2005 ] [ Tunwattanapong et al – 2013 ] [ Wang et al – 2008 ] Anisotropic [ Filip et al – 2014 ] [ Aittala et al – 2015 ] [ Dong et al – 2010 ] Lighting system complexity Easy Average Difficult Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 6

  6. Related work [ Gardner et al – 2003 ] Linear Light Source Reflectometry The linear light source apparatus Diffuse, Specular intensity, Specular roughness Rendering Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 7

  7. Related work [ Tunwattanapong et al – 2013 ] Acquiring Reflectance and Shape from Continuous Spherical Harmonics Illumination Acquisition Setup Rendered 3D Model Reflectance Maps Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 8

  8. Contribution • Capturing material with a simple setup • Easy and cheap to reproduce setup • Fast acquisition time • Few samples needed ( 20 used in our example ) • Simple and flexible • Dealing with anisotropic Spatially-Varying material • No assumption on surrounding pixels • Works with high frequency patterns (amulet dataset) Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 9

  9. Overview of our technique Capture Analysis Rendering Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 10

  10. Analysis • Each pixel treated independently Reflectance intensity Light azimuthal angle φ i Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 12

  11. Analysis • Anisotropy → Two peaks • Shading normal → Maximum difference x Light azimuthal angle φ i Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 13

  12. Analysis • Fourier transform • Fundamental – average Magnitude [ log( signal ) ] • Harmonics – complex numbers c 1   2     c 2 ni c s ( ) e d h n h h 0 • Frequency domain • Argument – offset • Magnitude – contribution Light azimuthal angle φ i Harmonics Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 14

  13. Analysis • Initial estimation of • Anisotropy direction φ a • Normal azimuth φ n • 3-step minimization process 1. Even rank harmonics – Anisotropy / Specular 2. First harmonic & fundamental – Normal / Diffuse 3. Fit on signal itself • Loop back Light azimuthal angle φ i Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 15

  14. Limitations • Constrained to almost planar surfaces • Shading normal in a limited range variation • Miss of high specularity or diffuse details • 20 samples used – Nyquist-Shannon sampling theorm • Single exposure images @14bits • Fresnel term ignored • Gazing angles issues Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 20

  15. Conclusion & Future work • Technique for retrieving anisotropic SVBRDF • Based on Fourier analysis • Simple capture setup and modular analysis • Application to non-planar objects • Extension to more advanced anisotropy patterns • Gathering similar pixels to improve accuracy Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 22

  16. Alban Fichet Imari Sato Nicolas Holzschuch alban.fichet@inria.fr imarik@nii.ac.jp nicolas.holzschuch@inria.fr Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 23

  17. Capture setup • Nikon D7100 camera • AF-S Nikkor 18-105mm 1:3.5- 5.6G lens • Captured in NEF 14 bits • Rotating arm with light • Computer controlled synchronized with camera shoot • Sample stage Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 24

  18. Representation • Incoming light vector i • Outgoing light vector o h = i + o • Half vector i + o • Anisotropy direction x Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 25

  19. BRDF model • Cook-Torrance ) = k d ( r i , o p æ ö æ ö ( ) G i , o ( ) F cos q d cos 2 j h + sin 2 j h + k s ç ÷ D tan 2 q h ç ÷ ç ÷ ç ÷ a x a y 4cos q i cos q o a x a y 2 2 è ø è ø • GGX Isotropic NDF GGX Anisotropic NDF a g 2 c + ( m × c + ( m × n ) n ) D ( i , o ) = D ( i , o ) = 2 + tan 2 q h ( ) æ ö æ ö 2 2 p cos 4 q h a g cos 2 j h + sin 2 j h ç ÷ ç ÷ p cos 4 q h a x a y 1 + tan 2 q h ç ÷ ç ÷ a x a y 2 2 è ø è ø Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis 26

Recommend


More recommend