PALINDROMES IN PURE MORPHIC WORDS Michelangelo Bucci with Elise Vaslet
a –––› ab b –––› a a ab aba abaab abaababa ... abaababaabaababaababaaba...
beeblebrox ~ =xorbelbeeb Pal = {w | w ~ = w} Pal(w) = { v ∈ Fact(w) s. t. v ∈ Pal } P(n) = #{ v ∈ Pal(w) s. t. |v| = n }
#Pal(v) ≤ |v| + 1
D(w) = |w| + 1 - #Pal(w)
abca aababbaa PwP s.t. w ~ ≠ w
Palindromic defect conjecture (Blondin Massé, Brlek, Garon, Labbé): Let u be the fixed point of a primitive morphism. If 0<D(u)< ∞ then u is periodic.
Palindromic defect conjecture (Blondin Massé, Brlek, Garon, Labbé): Let u be the fixed point of a primitive morphism. If 0<D(u)< ∞ then u is periodic.
Palindromic defect conjecture (Blondin Massé, Brlek, Garon, Labbé): Let u be the fixed point of a primitive morphism. If 0<D(u)< ∞ then u is periodic. BUT...
a ⟼ aabcacba b ⟼ aa c ⟼ a u = aabcacbaaabcacbaaaaaabcacbaaa...
a ⟼ aabcacba = aP b ⟼ aa c ⟼ a u = aPaPaaaaPaaaaP ...
P ...
a P ...
a P ...
a P ... a ...
P P P
a P P P a
u = aPaPaaaaPaaaaP ... ... w w w w
u = aPaPaaaaPaaaaP ... aP ... aP ... aP ... aP ... ... w w w w
u = aPaPaaaaPaaaaP ... aP ... aP ... aP ... aP ... ... w w w w
u = aPaPaaaaPaaaaP ... aP ... aP ... aP ... aP ... ... w w w w w’
u = aPaPaaaaPaaaaP ... aP ... aP ... aP ... aP ... ... w w w w ... w’ w’ w’ w’
D(u) = #{ v s.t. v ∊ Pref(u) and v is end-lacunary }
D(u) = #{ v s.t. v ∊ Pref(u) and v is end-lacunary } u = aabca...
D(u) = #{ v s.t. v ∊ Pref(u) and v is end-lacunary } u = aabca... D(u) ≥ 1
v π = lps(v)
v π = lps(v) v’
v π = lps(v) v’ v’’
v π = lps(v) v’ v’’ aabca ⟼ aabcabcaaabcacbaaaaaabcacba
u ∊ a{Pa,Paaaa} * |v| > K ⇒ P ∊ Fact(lps(v)) w ⟼ aw’, w ~ ⟼ aw’’ ⇒ w’ = w’’ ~
P P
P P P P
a P P a P P
a P P a P P
a P P a P P
P
P
aaa
aaa P
Hence (?) u is an aperiodic fixed point of a primitive morphism and D(u)=1
Hence (?) u is an aperiodic fixed point of a primitive morphism and D(u)=1 BUT...
a ⟼ aabcacba b ⟼ aa c ⟼ a
a ⟼ aabcacba b ⟼ aa c ⟼ a
a ⟼ aabcacba b ⟼ aa c ⟼ a
aabca ⟼ aabcabcaaabcacbaaaaaabcacba
Thank you
Recommend
More recommend