p lya frequency sequences analysis meets algebra
play

Plya frequency sequences: analysis meets algebra Apoorva Khare - PowerPoint PPT Presentation

Plya frequency sequences: analysis meets algebra Apoorva Khare Indian Institute of Science , Bangalore Totally positive matrices and Plya frequency sequences Definitions and examples Plya frequency sequences and algebraic combinatorics


  1. Pólya frequency sequences: analysis meets algebra Apoorva Khare Indian Institute of Science , Bangalore

  2. Totally positive matrices and Pólya frequency sequences Definitions and examples Pólya frequency sequences and algebraic combinatorics Finite and infinite one-sided PF sequences Totally positive/nonnegative matrices Definition. A rectangular matrix is totally positive (TP) if all minors are positive. (Similarly , totally non-negative (TN).) Thus all entries > 0 , all 2 × 2 minors > 0 , . . . These matrices occur widely in mathematics: Apoorva Khare , IISc and APRG , Bangalore 2 / 26

  3. Totally positive matrices and Pólya frequency sequences Definitions and examples Pólya frequency sequences and algebraic combinatorics Finite and infinite one-sided PF sequences Totally positive matrices in mathematics TP and TN matrices occur in analysis and differential equations (Aissen , Edrei , Schoenberg , Pólya , Loewner , Whitney) probability and statistics (Efron , Karlin , Pitman , Proschan , Rinott) interpolation theory and splines (Curry , Schoenberg) Gabor analysis (Gröchenig , Stöckler) interacting particle systems (Gantmacher , Krein) matrix theory (Ando , Cryer , Fallat , Garloff , Johnson , Pinkus , Sokal) representation theory (Lusztig , Postnikov) cluster algebras (Berenstein , Fomin , Zelevinsky) integrable systems (Kodama , Williams) quadratic algebras (Borger , Davydov , Grinberg , Hô Hai) combinatorics (Brenti , Lindström–Gessel–Viennot , Skandera , Sturmfels) . . . Apoorva Khare , IISc and APRG , Bangalore 3 / 26

  4. Totally positive matrices and Pólya frequency sequences Definitions and examples Pólya frequency sequences and algebraic combinatorics Finite and infinite one-sided PF sequences Examples of TP/TN matrices The lower-triangular matrix A = ( 1 j ≥ k ) n j,k =1 is TN. 1 Generalized Vandermonde matrices are TP: if 0 < x 1 < · · · < x n and 2 y 1 < y 2 < · · · < y n are real , then det( x y k j ) n j,k =1 > 0 . Apoorva Khare , IISc and APRG , Bangalore 4 / 26

  5. Totally positive matrices and Pólya frequency sequences Definitions and examples Pólya frequency sequences and algebraic combinatorics Finite and infinite one-sided PF sequences Examples of TP/TN matrices The lower-triangular matrix A = ( 1 j ≥ k ) n j,k =1 is TN. 1 Generalized Vandermonde matrices are TP: if 0 < x 1 < · · · < x n and 2 y 1 < y 2 < · · · < y n are real , then det( x y k j ) n j,k =1 > 0 . (Pólya:) The Gaussian kernel is TP: given σ > 0 and scalars 3 x 1 < x 2 < · · · < x n , y 1 < y 2 < · · · < y n , the matrix G [ x ; y ] := ( e − σ ( x j − y k ) 2 ) n j,k =1 is TP. Apoorva Khare , IISc and APRG , Bangalore 4 / 26

  6. Totally positive matrices and Pólya frequency sequences Definitions and examples Pólya frequency sequences and algebraic combinatorics Finite and infinite one-sided PF sequences Examples of TP/TN matrices The lower-triangular matrix A = ( 1 j ≥ k ) n j,k =1 is TN. 1 Generalized Vandermonde matrices are TP: if 0 < x 1 < · · · < x n and 2 y 1 < y 2 < · · · < y n are real , then det( x y k j ) n j,k =1 > 0 . (Pólya:) The Gaussian kernel is TP: given σ > 0 and scalars 3 x 1 < x 2 < · · · < x n , y 1 < y 2 < · · · < y n , the matrix G [ x ; y ] := ( e − σ ( x j − y k ) 2 ) n j,k =1 is TP. Proof: It suffices to show det G [ x ; y ] > 0 . Now factorize: G [ x ; y ] = diag( e − σx 2 j,k =1 · diag( e − σy 2 j ) n j =1 · (( e 2 σx j ) y k ) n k ) n k =1 . The middle matrix is a generalized Vandermonde matrix , so all three factors have positive determinants. Apoorva Khare , IISc and APRG , Bangalore 4 / 26

  7. Totally positive matrices and Pólya frequency sequences Definitions and examples Pólya frequency sequences and algebraic combinatorics Finite and infinite one-sided PF sequences Pólya frequency sequences The above notions of ‘finite’ matrices can be generalized to (bi-)infinite ones. A real sequence ( a n ) n ∈ Z is a Pólya frequency sequence if for any integers l 1 < l 2 < · · · < l n , m 1 < m 2 < · · · < m n , the determinant det( a l j − m k ) n j,k =1 ≥ 0 . Apoorva Khare , IISc and APRG , Bangalore 5 / 26

  8. Totally positive matrices and Pólya frequency sequences Definitions and examples Pólya frequency sequences and algebraic combinatorics Finite and infinite one-sided PF sequences Pólya frequency sequences The above notions of ‘finite’ matrices can be generalized to (bi-)infinite ones. A real sequence ( a n ) n ∈ Z is a Pólya frequency sequence if for any integers l 1 < l 2 < · · · < l n , m 1 < m 2 < · · · < m n , the determinant det( a l j − m k ) n j,k =1 ≥ 0 . In other words , these are bi-infinite Toeplitz matrices . . . . ...   . . . . . . . .   · · · a 0 a − 1 a − 2 a − 3 · · ·     · · · a 1 a 0 a − 1 a − 2 · · ·     · · · a 2 a 1 a 0 a − 1 · · ·     · · · a 3 a 2 a 1 a 0 · · ·    . . . .  ... . . . . . . . . which are totally non-negative. Example: Gaussians. For q ∈ (0 , 1) , the sequence ( q n 2 ) n ∈ Z is not just a TN sequence , but TP. (Why? Set q = e − σ .) Apoorva Khare , IISc and APRG , Bangalore 5 / 26

  9. Totally positive matrices and Pólya frequency sequences Definitions and examples Pólya frequency sequences and algebraic combinatorics Finite and infinite one-sided PF sequences Pólya frequency sequences The above notions of ‘finite’ matrices can be generalized to (bi-)infinite ones. A real sequence ( a n ) n ∈ Z is a Pólya frequency sequence if for any integers l 1 < l 2 < · · · < l n , m 1 < m 2 < · · · < m n , the determinant det( a l j − m k ) n j,k =1 ≥ 0 . In other words , these are bi-infinite Toeplitz matrices . . . . ...   . . . . . . . .   · · · a 0 a − 1 a − 2 a − 3 · · ·     · · · a 1 a 0 a − 1 a − 2 · · ·     · · · a 2 a 1 a 0 a − 1 · · ·     · · · a 3 a 2 a 1 a 0 · · ·    . . . .  ... . . . . . . . . which are totally non-negative. Example: Gaussians. For q ∈ (0 , 1) , the sequence ( q n 2 ) n ∈ Z is not just a TN sequence , but TP. (Why? Set q = e − σ .) Focus on two kinds of examples: finite and one-sided infinite . Apoorva Khare , IISc and APRG , Bangalore 5 / 26

  10. Totally positive matrices and Pólya frequency sequences Definitions and examples Pólya frequency sequences and algebraic combinatorics Finite and infinite one-sided PF sequences Generating functions of Pólya frequency sequences Two remarkable results (1950s) say that finite and one-sided Pólya frequency sequences are simply products of ‘atoms’! The ‘atoms’ are explained next. For now: why products? Apoorva Khare , IISc and APRG , Bangalore 6 / 26

  11. Totally positive matrices and Pólya frequency sequences Definitions and examples Pólya frequency sequences and algebraic combinatorics Finite and infinite one-sided PF sequences Generating functions of Pólya frequency sequences Two remarkable results (1950s) say that finite and one-sided Pólya frequency sequences are simply products of ‘atoms’! The ‘atoms’ are explained next. For now: why products? Suppose a = ( . . . , 0 , 0 , a 0 , a 1 , a 2 , a 3 , . . . ) is one-sided. Its generating function is Ψ a ( x ) := a 0 + a 1 x + a 2 x 2 + a 3 x 3 + · · · , a 0 � = 0 . Now if a , b are one-sided PF sequences , then their Toeplitz ‘matrices’ are TN:  a 0 0 0 · · ·   b 0 0 0 · · ·  a 1 a 0 0 · · · b 1 b 0 0 · · ·     T a := T b :=  .     a 2 a 1 a 0 · · · b 2 b 1 b 0 · · ·      . . .   . . . ... ... . . . . . . . . . . . . By the Cauchy–Binet formula , so also is T a T b � Toeplitz matrix. Apoorva Khare , IISc and APRG , Bangalore 6 / 26

  12. Totally positive matrices and Pólya frequency sequences Definitions and examples Pólya frequency sequences and algebraic combinatorics Finite and infinite one-sided PF sequences Generating functions of Pólya frequency sequences Two remarkable results (1950s) say that finite and one-sided Pólya frequency sequences are simply products of ‘atoms’! The ‘atoms’ are explained next. For now: why products? Suppose a = ( . . . , 0 , 0 , a 0 , a 1 , a 2 , a 3 , . . . ) is one-sided. Its generating function is Ψ a ( x ) := a 0 + a 1 x + a 2 x 2 + a 3 x 3 + · · · , a 0 � = 0 . Now if a , b are one-sided PF sequences , then their Toeplitz ‘matrices’ are TN:  a 0 0 0 · · ·   b 0 0 0 · · ·  a 1 a 0 0 · · · b 1 b 0 0 · · ·     T a := T b :=  .     a 2 a 1 a 0 · · · b 2 b 1 b 0 · · ·      . . .   . . . ... ... . . . . . . . . . . . . By the Cauchy–Binet formula , so also is T a T b � Toeplitz matrix. This product matrix corresponds to the coefficients of the power series Ψ a ( x )Ψ b ( x ) . This gives new examples of PF sequences from old ones. Apoorva Khare , IISc and APRG , Bangalore 6 / 26

Recommend


More recommend