or
play

or SoS Meets Program Obfuscation Ilan Komargodski Joint work with - PowerPoint PPT Presentation

Limits on Low-Degree PRGs or SoS Meets Program Obfuscation Ilan Komargodski Joint work with Boaz Barak (Harvard) Zvika Brakerski (Weizmann Institute) Pravesh K. Kothari (Princeton) Pseudorandom Generators (PRGs) : {0,1} {0,1}


  1. Limits on Low-Degree PRGs or SoS Meets Program Obfuscation Ilan Komargodski Joint work with Boaz Barak (Harvard) Zvika Brakerski (Weizmann Institute) Pravesh K. Kothari (Princeton)

  2. Pseudorandom Generators (PRGs) ๐ป: {0,1} ๐‘œ โ†’ {0,1} ๐‘› ๐ป ๐‘— : {0,1} ๐‘œ โ†’ {0,1} ๐ป ๐‘— ๐‘ฆ = ๐ป ๐‘ฆ ๐‘— ๐‘ง 1 ๐‘ง ๐‘› ๐‘ง 2 ๐‘ฆ 1 ๐‘ฆ 2 ๐‘ฆ ๐‘œ ๐ป ๐‘‰ ๐‘œ โ‰ˆ c.i ๐‘‰ ๐‘› Fundamental primitive in cryptography Assuming OWFs, โˆƒ ๐ป: {0,1} ๐‘œ โ†’ {0,1} poly(๐‘œ) How simple can it be? 2

  3. Local Pseudorandom Generators ๐ป: {0,1} ๐‘œ โ†’ {0,1} ๐‘› ๐ป ๐‘— : {0,1} ๐‘œ โ†’ {0,1} ๐ป ๐‘— : {0,1} d โ†’ {0,1} ๐ป ๐‘— ๐‘ฆ|๐ฝ ๐‘— = ๐ป ๐‘ฆ ๐‘— ๐ป ๐‘— ๐‘ฆ = ๐ป ๐‘ฆ ๐‘— ๐‘ง 1 ๐‘ง ๐‘› ๐‘ง 2 Locality ๐‘’ โ€“ every output bit depends on ๐‘’ input bits ๐‘ฆ 1 ๐‘ฆ 2 ๐‘ฆ ๐‘œ ๐ป ๐‘‰ ๐‘œ โ‰ˆ c.i ๐‘‰ ๐‘› Do such PRGs exist and if so, how much they can stretch? 3

  4. Local Pseudorandom Generators Positive : โ‡’ โˆƒ ๐‘ฏ: ๐Ÿ, ๐Ÿ ๐’ โ†’ ๐Ÿ, ๐Ÿ ๐’+๐’ ๐‘ , ๐’† = ๐‘ท(๐Ÿ) [AIK06] โ€ข OWF โˆˆ NC 1 โ€ข Candidate for ๐‘ฏ: ๐Ÿ, ๐Ÿ ๐’ โ†’ ๐Ÿ, ๐Ÿ ๐ช๐ฉ๐ฆ๐ณ(๐’) , , ๐’† = ๐‘ท(๐Ÿ) [Gol00, โ€ฆ ,App13, โ€ฆ ,AR16, โ€ฆ ] Negative : โ€ข For ๐‘’ = 2 , ๐‘› โ‰ค ๐‘œ [CM01] โ€ข For ๐‘’ = 3 , ๐‘› = ๐‘ƒ(๐‘œ) [CM01] โ€ข For ๐‘’ = 4, ๐‘› = ๐‘ƒ(๐‘œ) [MST06] For general ๐‘’, ๐‘› = ๐‘ƒ 2 ๐‘’ โ‹… ๐‘œ ๐‘’/2 โ€ข [MST06] Many applications : โ€ข New PKE schemes [ABW10] โ€ข Efficient MPC [IKO+11] โ€ข Reducing assumptions for indistinguishability obfuscation [AJS15,Lin16, โ€ฆ ] 4

  5. iO from Local PRGs Theorem : [Lin16,AnanthSahai16] โˆƒ iO based on: โ€ข ๐ป: 0,1 ๐‘œ โ†’ 0,1 ๐‘œ 1+๐œ— with locality ๐‘’ โ€ข Degree ๐‘’ multilinear maps โ€ข ๐‘’ = 2 โ€ข Bilinear maps (well studied, โˆƒ candidates) โ€ข No such PRG โ€ข ๐‘’ โˆˆ {3,4} โ€ข No satisfying candidate of mutlilinear maps โ€ข No such PRG โ€ข ๐‘’ โ‰ฅ 5 โ€ข No satisfying candidate of mutlilinear maps โ€ข โˆƒ candidates for PRG 5

  6. iO from Local PRGs Theorem : [LinTessaro17] โˆƒ iO based on: โ€ข ๐ป: 0,1 ๐‘œ โ†’ 0,1 ๐‘œ 1+๐œ— with block locality ๐‘’ โ€ข Degree ๐‘’ multilinear maps ๐ป: ฮฃ ๐‘œ โ†’ {0,1} ๐‘› ๐ป ๐‘— : ฮฃ ๐‘œ โ†’ {0,1} ฮฃ = 2 ๐‘ : ๐ป ๐‘— ๐‘ฆ = ๐ป ๐‘ฆ ๐‘— ๐ป: 0,1 ๐‘œ๐‘ โ†’ 0,1 ๐‘› ๐‘ง 1 ๐‘ง 2 ๐‘ง ๐‘› [LinTessaro17] need ๐ป: 0,1 ๐‘œ๐‘ โ†’ 0,1 2 3๐‘ ๐‘œ 1+๐œ— Attacks of [CM,MST] do ๐‘ฆ 1 ๐‘ฆ 2 ๐‘ฆ ๐‘œ not apply so might exist even for ๐’† = ๐Ÿ‘ ! ๐ป ๐‘‰ ๐‘œ โ‰ˆ c.i ๐‘‰ ๐‘› 6

  7. Our Results in a Nutshell 7

  8. Our Results Stretch Predicate Graph Predicate Remark Worst-case Worst-case Different vs. random vs. random vs. Same ๐‘› = เทจ ๐‘ƒ(2 2๐‘ ๐‘œ) Worst case Worst case Different ๐‘› = เทจ ๐‘ƒ(2 ๐‘ ๐‘œ) Worst case Worst case Same Also in [LV17] ๐‘› = เทจ ๐‘ƒ(2 ๐‘ ๐‘œ) Random Random Different ๐ป ๐‘— : ฮฃ ๐‘œ โ†’ {0,1} ๐ป: ฮฃ ๐‘œ โ†’ {0,1} ๐‘› ๐ป ๐‘— ๐‘ฆ = ๐ป ๐‘ฆ ๐‘— ๐‘ง 1 ๐‘ง 2 ๐‘ง ๐‘› Bonus: Simple candidate 3- block-local PRG with O(1)-block size and ๐‘ฆ 1 ๐‘ฆ 2 ๐‘ฆ ๐‘œ poly stretch ๐ป ๐‘‰ ๐‘œ โ‰ˆ c.i ๐‘‰ ๐‘› 8

  9. Image Refutation G(r) ๐‘Ž A break pseudo-randomness: A ๐‘จโ†๐‘Ž A ๐‘จ = 1 โˆ’ Pr ๐‘จโ†G r A ๐‘จ = 1 Pr > ๐‘œ๐‘“๐‘• A does image-refutation Refutation => distinguishing โ€ข ๐‘Ž =uniform w.r.t ๐‘Ž : ๐‘จโ†G r A ๐‘จ = 1 = 1 Pr Refutation handles ๐‘จโ†๐‘Ž A ๐‘จ = 1 < 0.5 Pr preprocessing on ๐‘  9

  10. าง Proof Idea Step 1: Reduce โ€œblock - localityโ€ to โ€œsparse algebraic degreeโ€œ. Let าง ๐‘ž = ๐‘ž 1 , โ€ฆ , ๐‘ž ๐‘› is a tuple of degree 2 polynomials with ๐‘ก monomials ๐‘ž: ๐’ ๐‘œ โ†’ ๐’ ๐‘› Step 2: On input ๐‘จ โˆˆ ยฑ1 ๐‘› (output of PRG or random), compute ๐‘› ๐‘ค๐‘๐‘š = ๐‘ฆโˆˆ{ยฑ1} ๐‘œ เท max ๐‘จ ๐‘— โ‹… ๐‘ž ๐‘— ๐‘ฆ ๐‘—=1 Theorem : 1) If ๐‘จ is in the image of าง ๐‘ž , then ๐‘ค๐‘๐‘š is large 2) Otherwise ๐‘ค๐‘๐‘š is small 10

  11. Step 2 On input ๐‘จ โˆˆ ยฑ1 ๐‘› (output of PRG or random), compute ๐‘› ๐‘ค๐‘๐‘š = ๐‘ฆโˆˆ{ยฑ1} ๐‘œ เท max ๐‘จ ๐‘— โ‹… ๐‘ž ๐‘— ๐‘ฆ ๐‘—=1 Distinguish if 1) ๐‘› ๐‘› ๐‘› โ‰ฅ ฮฉ(๐‘œ๐‘ก) 2 = ๐‘› โˆƒ๐‘ฆ: เท ๐‘จ ๐‘— โ‹… ๐‘ž ๐‘— ๐‘ฆ = เท ๐‘จ ๐‘— ๐‘—=1 ๐‘—=1 2) 1) If ๐‘จ is in the image Define ๐‘› independent R.V ๐‘ž , then ๐‘ค๐‘๐‘š โ‰ฅ ๐‘› of าง Y i = ๐‘จ ๐‘— โ‹… ๐‘ž ๐‘— (โ‹…) where each ๐‘ ๐‘— โ‰ค ๐‘ก. 2) Otherwise By Chernoff w.h.p ๐‘› ๐‘ค๐‘๐‘š โ‰ค ๐‘œ๐‘ก๐‘› เท ๐‘ ๐‘— โ‰ค ๐‘ƒ ๐‘œ๐‘ก๐‘› . ๐‘—=1 11

  12. Step 2 On input ๐‘จ โˆˆ ยฑ1 ๐‘› (output of PRG or random), compute ๐‘› ๐‘ค๐‘๐‘š = ๐‘ฆโˆˆ{ยฑ1} ๐‘œ เท max ๐‘จ ๐‘— โ‹… ๐‘ž ๐‘— ๐‘ฆ ๐‘—=1 Theorem ] Charikar-Wirth via Grothendieck Inequality [ : For every degree - 2 polynomial ๐‘ž: ๐’ ๐‘œ โ†’ ๐’ ๐‘ค๐‘๐‘š = ๐‘ฆโˆˆ ยฑ1 ๐‘œ ๐‘ž(๐‘ฆ) max can be approximated to within ๐‘ท(๐ฆ๐ฉ๐ก ๐’) factor. 12

  13. Step 1 Reduce โ€œ block-locality โ€ to โ€œ sparse algebraic degree โ€œ . A-priori unrelated: โ€ข 2-block-local with |block|= ๐‘ could have degree 2๐‘ Idea: Preprocess ๐‘ฆ โˆˆ ยฑ1 ๐‘๐‘œ to ๐‘ฆ โ€ฒ โˆˆ ยฑ1 ๐‘œ โ€ฒ for ๐‘œ โ€ฒ = 2 ๐‘ ๐‘œ ๐‘ฆ ๐‘ ๐‘œ ๐‘œ ๐‘ฆโ€ฒ 2 ๐‘ 2 ๐‘ 2 ๐‘ 2 ๐‘ 13

  14. Step 1 The ๐‘— -th block of ๐‘ฆโ€ฒ consists of all 2 ๐‘ monomials on the ๐‘— -th block of ๐‘ฆ . ๐ป: ยฑ1 ๐‘๐‘œ โ†’ ยฑ1 ๐‘› ๐ปโ€ฒ: ยฑ1 2 ๐‘ ๐‘œ โ†’ ๐’ ๐‘› โ‡’ Properties: โ€ข If ๐ป has block-locality โ„“ , then ๐ปโ€ฒ has degree โ„“ โ€ข # of monomials in ๐ปโ€ฒ is 2 2๐‘ โ€ข ๐ปโ€ฒ is not necessarily a PRG even if ๐ป is a PRG โ€ข Yet, the image of ๐ปโ€ฒ contains the image of ๐ป Using โ€ข Solving image-refutation on ๐ปโ€ฒ is enough preprocessing Rules out 2-block local generator with |block|= ๐‘ with ๐‘› โ‰ฅ ฮฉ 2 2๐‘ โ‹… 2 ๐‘ โ‹… ๐‘œ = ฮฉ(2 3๐‘ โ‹… ๐‘œ) . 14

  15. Summary & Questions Stretch Predicate Graph Predicat Remark Worst- Worst- e case vs. case vs. Different random random vs. Same ๐‘› = เทจ ๐‘ƒ(2 2๐‘ ๐‘œ) Worst Worst Different case case ๐‘› = เทจ ๐‘ƒ(2 ๐‘ ๐‘œ) Worst Worst Same Also in case case [LV17] ๐‘› = เทจ ๐‘ƒ(2 ๐‘ ๐‘œ) Random Random Different โ€ข ๐‘› = เทจ ๐‘ƒ(2 ๐‘ ๐‘œ) , worst-case, worst-case, different โ€ข Find a different way to get iO from bililnear maps 15

Recommend


More recommend