optimal oblivious routing in
play

Optimal Oblivious Routing in Hole-Free Networks Costas Busch - PowerPoint PPT Presentation

Optimal Oblivious Routing in Hole-Free Networks Costas Busch Louisiana State University Malik Magdon-Ismail Rensselaer Polytechnic Institute 1 Routing: choose paths from sources to destinations v 3 u 1 u v 2 2 u 3 v 1 2 Edge


  1. Optimal Oblivious Routing in Hole-Free Networks Costas Busch Louisiana State University Malik Magdon-Ismail Rensselaer Polytechnic Institute 1

  2. Routing: choose paths from sources to destinations v 3 u 1 u v 2 2 u 3 v 1 2

  3. Edge congestion Node congestion C C edge node maximum number of maximum number of paths that use any node paths that use any edge 3

  4. Length of chosen path Stretch= Length of shortest path 12   stretch 1 . 5 shortest path 8 u v chosen path 4

  5. Oblivious Routing Each packet path choice is independent of other packet path choices 5

  6. Path choices: 1  q , , q k Probability of choosing a path: Pr[ i q ] k   Pr[ ] 1 q i  i 1 q 1 q 2 q 3 q 4 q 4 q 5 6

  7. Benefits of oblivious routing: • Distributed • Needs no global coordination • Appropriate for dynamic packet arrivals 7

  8. Hole-free network 8

  9. Our contribution in this work: Oblivious routing in hole-free networks Constant stretch Small congestion  stretch O ( 1 ) node  * C O ( C log n ) node 9

  10. Holes 10

  11. Related Work Valiant [SICOMP’82]: First oblivious routing algorithms for permutations on butterfly and hypercube butterfly butterfly (reversed) 11

  12. Maggs, Meyer auf der Heide, Voecking, Westermann [FOCS’97]:     d-dimensional Grid: * C O d C log n edge edge Lower bound   * log C n     edge C for oblivious routing:   edge d   12

  13. Arbitrary Graphs (existential result):   Racke [FOCS’02]:  * 3 C O C log n edge edge    Racke [STOC’08]: * C O C log n edge edge Constructive Results: Azar et al. [STOC03] Harrelson et al. [SPAA03] Bienkowski et al. [SPAA03] 13

  14. General Approach: Hierarchical clustering 14

  15. General Approach: Hierarchical clustering 15

  16. At the lowest level every node is a cluster 16

  17. source destination 17

  18. Pick random node 18

  19. Pick random node 19

  20. Pick random node 20

  21. Pick random node 21

  22. Pick random node 22

  23. Pick random node 23

  24. Pick random node 24

  25. 25

  26. Problem: Big stretch Adjacent nodes may follow long paths 26

  27. An Impossibility Result Stretch and congestion cannot be minimized simultaneously in arbitrary graphs 27

  28. Example graph: ( n ) Each path has length  n paths n nodes Length 1 Destination Source of of all packets n packets 28

  29. 1 Stretch = n Edge congestion = packets in one path n 29

  30. n Stretch = Edge congestion = 1 1 packet per path 30

  31. Result for Grids: Busch, Magdon- Ismail, Xi [TC’08]     * C O d C log n edge edge  2 stretch ( ) O d For d=2, a similar result given by C. Scheideler 31

  32. Special graphs embedded in the 2-dimensional plane: Busch, Magdon-Ismail, Xi [SPAA 2005]: Constant stretch Small congestion  stretch O ( 1 ) node  * C O ( C log n ) node    * C O ( C log n ) edge edge degree 32

  33. Embeddings in wide, closed-curved areas 33

  34. Graph models appropriate for various wireless network topologies Transmission radius 34

  35. Basic Idea source destination 35

  36. Pick a random intermediate node 36

  37. Construct path through intermediate node 37

  38. However, algorithm does not extend to arbitrary closed shapes 38

  39. Our contribution in this work: Oblivious routing in hole-free networks 39

  40. Approach: route within square areas node   * C O ( C log n ) stretch O ( 1 ) node 40

  41. grid n  n 41

  42. simple area in grid (hole-free area) 42

  43. Hole-free network 43

  44. Canonical square decomposition 44

  45. Canonical square decomposition 45

  46. Canonical square decomposition 46

  47. Canonical square decomposition 47

  48. 48

  49. 49

  50. Shortest path v u 50

  51. Canonical square sequence v u 51

  52. A random path in canonical squares v u 52

  53. Path has constant stretch v u 53

  54. Random 2-bend paths or 1-bend paths in square sequence 54

Recommend


More recommend