model of complex networks based on citation dynamics
play

Model of Complex Networks based on Citation Dynamics Lovro Subelj - PowerPoint PPT Presentation

Model of Complex Networks based on Citation Dynamics Lovro Subelj & Marko Bajec University of Ljubljana Faculty of Computer and Information Science LSNA 13 L. Subelj (University of Ljubljana) Citation Network Model LSNA 13


  1. Model of Complex Networks based on Citation Dynamics Lovro ˇ Subelj & Marko Bajec University of Ljubljana Faculty of Computer and Information Science LSNA ’13 L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 1 / 14

  2. Introduction Introduction Real-world networks are scale-free, small-world etc. Social networks are degree assortative . (Newman and Park, 2003) → Properties captured by many models in the literature. ֒ However, non-social networks are degree disassortative ! Figure: Part of Cora citation network with highlighted hubs. For simplicity, we consider only undirected networks. L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 2 / 14

  3. Models of complex networks Forest Fire model (Leskovec et al., 2007) Let p be the burning probability . 1 i chooses an ambassador a and links to it; p 2 i selects x p ∼ G ( 1 − p ) neighbors a 1 , . . . , a x p and links to them; 3 a 1 , . . . , a x p are taken as the ambassadors of i . w w v v z z y y x x i i a a Networks are scale-free, small-world, degree assortative etc. Natural interpretation for citation networks! L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 3 / 14

  4. Models of complex networks Author citation dynamics 1 author chooses a paper (i.e., ambassador) and cites it; 2 author selects some of its references and cites them; 3 the latter are taken as the ambassadors. w w v v z z y y x x i i a a Assumption → authors read all papers they cite (and vice-versa) . Only ≈ 20% of cited papers are read. (Simkin and Roychowdhury, 2003) Authors read or cite papers due to two (independent) processes ! L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 4 / 14

  5. Models of complex networks Citation model (our) Let q be the linking probability . 1 i chooses an ambassador a ; p 2 i selects x p ∼ G ( 1 − p ) neighbors a 1 , . . . , a x p ; q i selects x q ∼ G ( 1 − q ) neighbors and links to them; 3 a 1 , . . . , a x p are taken as the ambassadors of i . w w v v z z y y x x i i a a Networks are scale-free, small-world, degree disassortative etc. Nodes do not (necessarily) link to their ambassadors! L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 5 / 14

  6. Models of complex networks Alternative models w w w w v v v v z z z z y y y y x x x x i i i i a a a a Forest Fire (Leskovec et al., 2007) Butterfly (McGlohon et al., 2008) w w w w v v v v z z z z y y y y x x x x i i i i a a a a Copying (Krapivsky and Redner, 2005) Citation model (our) L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 6 / 14

  7. Models of complex networks Analysis of the models S , T are the ambassadors and linked nodes. Forest Fire model: S = T Butterfly model: S ⊇ T Copying model: S ⊆ T Citation model: S , T arbitrary w w w w w w w w v v v v v v v v z z z z z z z z y y y y y y y y x x x x x x x x i i i i i i i i a a a a a a a a Why degree disassortativity? Linking to the ambassadors increases assortativity. Absence of such a process prevents assortativity. (Newman and Park, 2003) Heterogeneous networks are disassortative. (Johnson et al., 2010) L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 7 / 14

  8. Experimental analysis Comparison of the models ( k & r ) Only Citation model gives degree disassortative networks (i.e., r < 0). 14 Forest Fire 0.8 Forest Fire Butterfly Butterfly Network degree k 12 Degree mixing r 0.6 Copying Copying Citation Citation 10 0.4 8 0.2 6 0 4 -0.2 2 -0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 Burning probability p Burning probability p 14 Forest Fire 0.8 Forest Fire Butterfly Butterfly Network degree k 12 Degree mixing r 0.6 Copying Copying Citation Citation 10 0.4 8 0.2 6 0 4 -0.2 2 -0.4 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 Linking probability q Linking probability q Shaded regions show most likely parameter values. (Laurienti et al., 2011) L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 8 / 14

  9. Experimental analysis Comparison of the models ( l , C & Q ) All models give (scale-free) small-world networks with high modularity . 0.8 1 18 Forest Fire Forest Fire Network modularity Q Network clustering C Butterfly Butterfly 16 0.8 Mean distance l Copying 0.6 Copying 14 Citation Citation 12 0.6 10 0.4 0.4 8 Forest Fire Butterfly 6 0.2 Copying 0.2 4 Citation 2 0 0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 Burning probability p Burning probability p Burning probability p 0.8 1 18 Forest Fire Forest Fire Network modularity Q Network clustering C Butterfly Butterfly 16 0.8 Mean distance l Copying Copying 0.6 14 Citation Citation 12 0.6 10 0.4 0.4 8 Forest Fire Butterfly 6 0.2 Copying 0.2 4 Citation 2 0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 Linking probability q Linking probability q Linking probability q L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 9 / 14

  10. Experimental analysis Parameter estimation s is the number of ambassadors, s = | S | . s ≤ 1 − p 2 qs 1 − 2 p and k ≤ 1 − q − (1 − q ) s +1 For a given k and fixed q , the system can be solved for p . 30 100 100 5 500 500 25 Network degree k # ambassadors s 1000 1000 4 20 3 15 10 2 5 1 0 0.1 0.2 0.3 0.4 0.2 0.4 0.6 0.8 Burning probability p Linking probability q L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 10 / 14

  11. Experimental analysis Cora citation network p q n m k r Cora network 23166 89157 7 . 697 − 0 . 055 Forest Fire 0 . 46 - 23166 88828 7 . 669 0 . 211 Citation 0 . 37 0 . 59 23166 89888 7 . 760 − 0 . 047 Percentage of papers considered is 66 % (# references just 3 . 85)! 1000 Cora network Cora network Degree distribution P(k) Forest Fire Forest Fire 0.1 Neighbor degree k N Citation Citation 0.01 100 0.001 10 0.0001 1 10 100 1000 1 10 100 Node degree k Node degree k Subelj and Bajec, 2012) . For other network properties see paper and (ˇ L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 11 / 14

  12. Experimental analysis arXiv citation network p q n m k r arXiv network 27400 352021 25 . 695 − 0 . 030 Citation 0 . 46 0 . 67 27400 350699 25 . 598 − 0 . 068 Percentage of papers considered is 49 % (# references is 12 . 85)! arXiv network arXiv network Degree distribution P(k) 0.1 Citation Citation Neighbor degree k N 1000 0.01 100 0.001 0.0001 10 1 10 100 1000 1 10 100 1000 Node degree k Node degree k L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 12 / 14

  13. Conclusions Conclusions Model for citation networks with most common properties. (Non-social) degree non-assortative networks → nodes must not link to their ambassadors! Networks also show dichotomous mixing . (Hao and Li, 2011) Future work: extension to directed networks, network traversal (isolated nodes), analyses on reliable data (e.g., WoS ). L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 13 / 14

  14. Questions & comments lovro.subelj@fri.uni-lj.si http://lovro.lpt.fri.uni-lj.si/ L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 14 / 14

  15. D. Hao and C. Li. The dichotomy in degree correlation of biological networks. PLoS ONE , 6 (12):e28322, 2011. doi: 10.1371/journal.pone.0028322 . S. Johnson, J. J. Torres, J. Marro, and M. A. Mu˜ noz. Entropic origin of disassortativity in complex networks. Phys. Rev. Lett. , 104(10):108702, 2010. doi: 10.1103/PhysRevLett.104.108702 . P. L. Krapivsky and S. Redner. Network growth by copying. Phys. Rev. E , 71(3):036118, 2005. doi: 10.1103/PhysRevE.71.036118 . P. J. Laurienti, K. E. Joyce, Q. K. Telesford, J. H. Burdette, and S. Hayasaka. Universal fractal scaling of self-organized networks. Physica A , 390(20):3608–3613, 2011. doi: 16/j.physa.2011.05.011 . J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking diameters. ACM Trans. Knowl. Discov. Data , 1(1):1–41, 2007. M. McGlohon, L. Akoglu, and C. Faloutsos. Weighted graphs and disconnected components: Patterns and a generator. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , page 524–532, New York, NY, USA, 2008. M. E. J. Newman and J. Park. Why social networks are different from other types of networks. Phys. Rev. E , 68(3):036122, 2003. doi: 10.1103/PhysRevE.68.036122 . M. V. Simkin and V. P. Roychowdhury. Read before you cite! Compl. Syst. , 14:269–274, 2003. L. ˇ Subelj and M. Bajec. Clustering assortativity, communities and functional modules in real-world networks. e-print arXiv:12082518v1 , pages 1–21, 2012. L. ˇ Subelj and M. Bajec. Model of complex networks based on citation dynamics. In Proceedings of the WWW Workshop on Large Scale Network Analysis , page 4, Rio de Janeiro, Brazil, 2013. L. ˇ Subelj (University of Ljubljana) Citation Network Model LSNA ’13 14 / 14

Recommend


More recommend