optimal bounds in parametric ltl games
play

Optimal Bounds in Parametric LTL Games Martin Zimmermann Universit - PowerPoint PPT Presentation

Optimal Bounds in Parametric LTL Games Martin Zimmermann Universit at des Saarlandes October 28th, 2013 AVACS Meeting Freiburg, Germany Martin Zimmermann Universit at des Saarlandes Parametric LTL Games 1/13 Motivation Linear


  1. Optimal Bounds in Parametric LTL Games Martin Zimmermann Universit¨ at des Saarlandes October 28th, 2013 AVACS Meeting Freiburg, Germany Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 1/13

  2. Motivation Linear Temporal Logic ( LTL ) as specification language: Simple and variable-free syntax and intuitive semantics. Expressively equivalent to first-order logic on words. LTL model-checking routinely applied in industrial settings. But LTL cannot express timing constraints. Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 2/13

  3. Motivation Linear Temporal Logic ( LTL ) as specification language: Simple and variable-free syntax and intuitive semantics. Expressively equivalent to first-order logic on words. LTL model-checking routinely applied in industrial settings. But LTL cannot express timing constraints. Possible remedies: Add F ≤ k for k ∈ N . Problem: finding “right” k impracticable. Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 2/13

  4. Motivation Linear Temporal Logic ( LTL ) as specification language: Simple and variable-free syntax and intuitive semantics. Expressively equivalent to first-order logic on words. LTL model-checking routinely applied in industrial settings. But LTL cannot express timing constraints. Possible remedies: Add F ≤ k for k ∈ N . Problem: finding “right” k impracticable. Alur et. al, Kupferman et. al: add F ≤ x for variable x . Now: does there exist a value x such that F ≤ x ϕ holds? what is the best value x such that F ≤ x ϕ holds? In Model-Checking: adding variable time bounds does not increase complexity. Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 2/13

  5. Infinite Games Arena A = ( V , V 0 , V 1 , E ): finite directed graph ( V , E ), V 0 ⊆ V positions of Player 0 (circles), V 1 = V \ V 0 positions of Player 1 (squares). 0 1 2 Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 3/13

  6. Infinite Games Arena A = ( V , V 0 , V 1 , E ): finite directed graph ( V , E ), V 0 ⊆ V positions of Player 0 (circles), V 1 = V \ V 0 positions of Player 1 (squares). 0 1 2 Play: path ρ 0 ρ 1 · · · through A . Strategy for Player i : σ : V ∗ V i → V s.t. ( v , σ ( wv )) ∈ E . ρ 0 ρ 1 · · · consistent with σ : ρ n +1 = σ ( ρ 0 · · · ρ n ) for all n s.t. ρ n ∈ V i . Finite-state strategy: implemented by finite automaton with output. Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 3/13

  7. PLTL: Syntax and Semantics Parametric LTL : p atomic proposition, x ∈ X , y ∈ Y ( X ∩ Y = ∅ ). ϕ ::= p | ¬ p | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | F ≤ x ϕ | G ≤ y ϕ Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 4/13

  8. PLTL: Syntax and Semantics Parametric LTL : p atomic proposition, x ∈ X , y ∈ Y ( X ∩ Y = ∅ ). ϕ ::= p | ¬ p | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | F ≤ x ϕ | G ≤ y ϕ Semantics w.r.t. variable valuation α : X ∪ Y → N : As usual for LTL operators. ϕ ( ρ, n , α ) | = F ≤ x ϕ : ρ n n + α ( x ) ϕ ϕ ϕ ϕ ϕ ( ρ, n , α ) | = G ≤ y ϕ : ρ n n + α ( y ) Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 4/13

  9. PLTL: Syntax and Semantics Parametric LTL : p atomic proposition, x ∈ X , y ∈ Y ( X ∩ Y = ∅ ). ϕ ::= p | ¬ p | ϕ ∧ ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | F ≤ x ϕ | G ≤ y ϕ Semantics w.r.t. variable valuation α : X ∪ Y → N : As usual for LTL operators. ϕ ( ρ, n , α ) | = F ≤ x ϕ : ρ n n + α ( x ) ϕ ϕ ϕ ϕ ϕ ( ρ, n , α ) | = G ≤ y ϕ : ρ n n + α ( y ) Fragments: PLTL F : no parameterized always operators G ≤ y . PLTL G : no parameterized eventually operators F ≤ x . Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 4/13

  10. PLTL Games PLTL game: G = ( A , v 0 , ϕ ) with arena A (labeled by ℓ : V → 2 P ), initial vertex v 0 , and PLTL formula ϕ . Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 5/13

  11. PLTL Games PLTL game: G = ( A , v 0 , ϕ ) with arena A (labeled by ℓ : V → 2 P ), initial vertex v 0 , and PLTL formula ϕ . Rules: all plays start in v 0 . Player 0 wins ρ 0 ρ 1 · · · w.r.t. α , if ( ℓ ( ρ 0 ) ℓ ( ρ 1 ) · · · , α ) | = ϕ . Player 1 wins ρ 0 ρ 1 · · · w.r.t. α , if ( ℓ ( ρ 0 ) ℓ ( ρ 1 ) · · · , α ) �| = ϕ . Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 5/13

  12. PLTL Games PLTL game: G = ( A , v 0 , ϕ ) with arena A (labeled by ℓ : V → 2 P ), initial vertex v 0 , and PLTL formula ϕ . Rules: all plays start in v 0 . Player 0 wins ρ 0 ρ 1 · · · w.r.t. α , if ( ℓ ( ρ 0 ) ℓ ( ρ 1 ) · · · , α ) | = ϕ . Player 1 wins ρ 0 ρ 1 · · · w.r.t. α , if ( ℓ ( ρ 0 ) ℓ ( ρ 1 ) · · · , α ) �| = ϕ . σ is winning strategy for Player i w.r.t. α , if every consistent play is winning for Player i w.r.t. α . Winning valuations for Player i W i ( G ) = { α | Player i has winning strategy for G w.r.t. α } Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 5/13

  13. PLTL Games PLTL game: G = ( A , v 0 , ϕ ) with arena A (labeled by ℓ : V → 2 P ), initial vertex v 0 , and PLTL formula ϕ . Rules: all plays start in v 0 . Player 0 wins ρ 0 ρ 1 · · · w.r.t. α , if ( ℓ ( ρ 0 ) ℓ ( ρ 1 ) · · · , α ) | = ϕ . Player 1 wins ρ 0 ρ 1 · · · w.r.t. α , if ( ℓ ( ρ 0 ) ℓ ( ρ 1 ) · · · , α ) �| = ϕ . σ is winning strategy for Player i w.r.t. α , if every consistent play is winning for Player i w.r.t. α . Winning valuations for Player i W i ( G ) = { α | Player i has winning strategy for G w.r.t. α } Lemma Determinacy: W 0 ( G ) is the complement of W 1 ( G ) . Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 5/13

  14. An Example { q 0 } { p 0 } { q 0 , q 1 } { d } v 0 { q 1 } { p 1 } Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 6/13

  15. An Example { q 0 } { p 0 } { q 0 , q 1 } { d } v 0 { q 1 } { p 1 } ϕ 1 = FG d ∨ � i ∈{ 0 , 1 } G ( q i → F p i ) : W 1 ( G 1 ) = ∅ . Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 6/13

  16. An Example { q 0 } { p 0 } { q 0 , q 1 } { d } v 0 { q 1 } { p 1 } ϕ 1 = FG d ∨ � i ∈{ 0 , 1 } G ( q i → F p i ) : W 1 ( G 1 ) = ∅ . ϕ 2 = FG d ∨ � i ∈{ 0 , 1 } G ( q i → F ≤ x i p i ) : W 0 ( G 2 ) = ∅ . Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 6/13

  17. More Example Properties Bounded B¨ uchi: GF ≤ x p Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 7/13

  18. More Example Properties Bounded B¨ uchi: GF ≤ x p Finitary parity (Chatterjee, Henzinger, Horn):   � � c ′ FG  c → F ≤ x    c odd c ′ > c c ′ even Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 7/13

  19. More Example Properties Bounded B¨ uchi: GF ≤ x p Finitary parity (Chatterjee, Henzinger, Horn):   � � c ′ FG  c → F ≤ x    c odd c ′ > c c ′ even Finitary Streett (CHH): k � FG ( R j → F ≤ x G j ) j =1 Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 7/13

  20. Decision Problems Membership: given G , i ∈ { 0 , 1 } , and α , is α ∈ W i ( G )? Emptiness: given G and i ∈ { 0 , 1 } , is W i ( G ) empty? Finiteness: given G and i ∈ { 0 , 1 } , is W i ( G ) finite? Universality: given G and i ∈ { 0 , 1 } , is W i ( G ) universal? Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 8/13

  21. Decision Problems Membership: given G , i ∈ { 0 , 1 } , and α , is α ∈ W i ( G )? Emptiness: given G and i ∈ { 0 , 1 } , is W i ( G ) empty? Finiteness: given G and i ∈ { 0 , 1 } , is W i ( G ) finite? Universality: given G and i ∈ { 0 , 1 } , is W i ( G ) universal? The benchmark: Theorem (Pnueli, Rosner 1989) Solving LTL games is 2Exptime -complete. Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 8/13

  22. Decision Problems Membership: given G , i ∈ { 0 , 1 } , and α , is α ∈ W i ( G )? Emptiness: given G and i ∈ { 0 , 1 } , is W i ( G ) empty? Finiteness: given G and i ∈ { 0 , 1 } , is W i ( G ) finite? Universality: given G and i ∈ { 0 , 1 } , is W i ( G ) universal? The benchmark: Theorem (Pnueli, Rosner 1989) Solving LTL games is 2Exptime -complete. Adding parameterized operators does not increase complexity: Theorem All four decision problems are 2Exptime -complete. Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 8/13

  23. Proof Idea Emptiness for PLTL F games, i.e., only F ≤ x in ϕ . 1. Duplicate arena, color one copy red, the other green. Player 0 can change between copies after every move. 2. Inductively replace every F ≤ x ψ by ( red → ( red U ( green U ψ ))) ∧ ( green → ( green U ( red U ψ ))) 3. Add conjunct GF red ∧ GF green to ϕ , obtain ϕ ′ . Martin Zimmermann Universit¨ at des Saarlandes Parametric LTL Games 9/13

Recommend


More recommend