online linear discrepancy
play

Online Linear Discrepancy Mitchel T. Keller , Noah Streib, and - PowerPoint PPT Presentation

Online Linear Discrepancy Mitchel T. Keller , Noah Streib, and William T. Trotter School of Mathematics Georgia Institute of Technology SIAM DM10 16 June 2010 Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 1 / 16 Outline


  1. Online Linear Discrepancy Mitchel T. Keller , Noah Streib, and William T. Trotter School of Mathematics Georgia Institute of Technology SIAM DM10 16 June 2010 Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 1 / 16

  2. Outline Linear Discrepancy 1 Online Algorithms 2 Online Linear Discrepancy 3 Lower Bounds Upper Bounds Representations Open Problems 4 Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 2 / 16

  3. Linear Discrepancy Defined Definition The linear discrepancy of a linear extension L of a poset P is ld ( P , L ) = max x � P y | h L ( y ) − h L ( x ) | . Definition (Tanenbaum, Trenk, and Fishburn 2001) The linear discrepancy of a poset P is ld ( P ) = min L ∈E ( P ) ld ( P , L ) if P is not a chain. If P is a chain, ld ( P ) = 0. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 3 / 16

  4. Facts About Linear Discrepancy Theorem (Fishburn, Tanenbaum, and Trenk 2001) If P is a poset with incomparability graph G , then ld ( P ) = bw ( G ) . Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 4 / 16

  5. Facts About Linear Discrepancy Theorem (Fishburn, Tanenbaum, and Trenk 2001) If P is a poset with incomparability graph G , then ld ( P ) = bw ( G ) . Theorem (Kloks, Kratsch, Müller 1999) ld ( P , L ) ≤ 3 ld ( P ) Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 4 / 16

  6. Facts About Linear Discrepancy Theorem (Fishburn, Tanenbaum, and Trenk 2001) If P is a poset with incomparability graph G , then ld ( P ) = bw ( G ) . Theorem (Kloks, Kratsch, Müller 1999) ld ( P , L ) ≤ 3 ld ( P ) Lemma (TTF 2001, Rautenbach 2005) (1) Linear discrepancy is monotonic. (2) ld ( P ) ≥ width ( P ) − 1 (3) ∆( P ) / 2 ≤ ld ( P ) ≤ 2 ∆( P ) − 2 Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 4 / 16

  7. Online Algorithm Framework (1) Builder presents poset one point at a time (2) Assigner makes irrevocable decision about where to insert it into a linear extension. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 5 / 16

  8. Online Algorithm Framework (1) Builder presents poset one point at a time (2) Assigner makes irrevocable decision about where to insert it into a linear extension. (3) Variant: Builder is required to provide a representation (interval, unit interval, etc.) Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 5 / 16

  9. Lower Bound for General Posets Lemma (K, Streib, Trotter) For each k ≥ 1 , Builder can construct an interval order P with ld ( P ) = k so that Assigner must form a linear extension L with ld ( P , L ) = 3 k − 1 . Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 6 / 16

  10. Lower Bound for General Posets L k + 1 z D A k + 1 x Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 7 / 16

  11. Lower Bound for General Posets D L z k z D u u A A k x x Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 7 / 16

  12. Lower Bound for General Posets D L z k z D u y u y A A k x x Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 7 / 16

  13. Lower Bound for General Posets D L z k z D u y C u k − 2 y C A A k x x Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 7 / 16

  14. Lower Bound for General Posets D L z k z D u y C u k − 2 y C B B k − 1 A A k x x Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 7 / 16

  15. Lower Bound for General Posets L opt D L z k D z z D u u y C C u k − 2 y y C B B B k − 1 x A A A k x x Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 7 / 16

  16. Lower Bound for Semiorders Lemma (KST) For each k ≥ 1 , Builder can construct a semiorder P with ld ( P ) = k so that Assigner must form a linear extension L with ld ( P , L ) = 2 k. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 8 / 16

  17. Upper Bounds Theorem (KST) If Builder constructs a poset P with ld ( P ) = k ≥ 1 and Assigner uses algorithm A to assemble a linear extension L of P , then (1) ld ( P , L ) ≤ 2 k if P is a semiorder and (2) ld ( P , L ) ≤ 3 k − 1 otherwise. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 9 / 16

  18. First Attempts at Algorithms M : Insert point in middle of its allowable range in existing linear extension. G : Insert point to minimize ld ( P , L ) for updated linear extension. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 10 / 16

  19. Critical Pairs Definition A pair ( x , y ) of incomparable points is a critical pair if (1) D ( x ) ⊆ D ( y ) (2) U ( y ) ⊆ U ( x ) Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 11 / 16

  20. Critical Pairs Definition A pair ( x , y ) of incomparable points is a critical pair if (1) D ( x ) ⊆ D ( y ) (2) U ( y ) ⊆ U ( x ) Lemma (K, Young 2010) (1) If x and y are incomparable and h L ( y ) − h L ( x ) = ld ( P , L ) , then ( x , y ) is a critical pair. (2) There exists an optimal linear extension L of P so that if ( x , y ) is a critical pair reversed by L, then ( y , x ) is also a critical pair. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 11 / 16

  21. An Optimal Online Linear Discrepancy Algorithm In four words: Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 12 / 16

  22. An Optimal Online Linear Discrepancy Algorithm In four words: Reverse few critical pairs. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 12 / 16

  23. An Optimal Online Linear Discrepancy Algorithm In four words: Reverse few critical pairs. A bit more detail Builder presents new point x . Assigner uses algorithm A : Identify one-way critical pairs ( x , u ) and ( v , x ) u 0 the L -smallest u , v 0 the L -largest v None of either type: x in any legal position Only ( x , u ) : x below u 0 Only ( v , x ) : x above v 0 v 0 < u 0 in L : x any legal position between v 0 and u 0 Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 12 / 16

  24. An Optimal Online Linear Discrepancy Algorithm In four words: Reverse few critical pairs. A bit more detail Builder presents new point x . Assigner uses algorithm A : Identify one-way critical pairs ( x , u ) and ( v , x ) u 0 the L -smallest u , v 0 the L -largest v None of either type: x in any legal position Only ( x , u ) : x below u 0 Only ( v , x ) : x above v 0 v 0 < u 0 in L : x any legal position between v 0 and u 0 u 0 < v 0 in L ? Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 12 / 16

  25. An Optimal Online Linear Discrepancy Algorithm In four words: Reverse few critical pairs. A bit more detail Builder presents new point x . Assigner uses algorithm A : Identify one-way critical pairs ( x , u ) and ( v , x ) u 0 the L -smallest u , v 0 the L -largest v None of either type: x in any legal position Only ( x , u ) : x below u 0 Only ( v , x ) : x above v 0 v 0 < u 0 in L : x any legal position between v 0 and u 0 u 0 < v 0 in L ? x anywhere between u 0 and v 0 Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 12 / 16

  26. A Look At Why It Works z y C : x w Lemma (KST) A never assembles a linear extension L with a copy of C such that x < w < z < y in L, all points less than x in L are less than y in P , and all points greater than y in L are greater than x in P . w z x y . . . . . . . . . < y in P > x in P Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 13 / 16

  27. Performance of A Theorem (KST) If Builder constructs a poset P with ld ( P ) = k ≥ 1 and Assigner uses algorithm A to assemble a linear extension L of P , then (1) ld ( P , L ) ≤ 2 k if P is a semiorder and (2) ld ( P , L ) ≤ 3 k − 1 otherwise. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 14 / 16

  28. Builder Required to Present Representation Theorem (KST) If Builder is required to present an interval representation of an interval order P with ld ( P ) = k ≥ 1 and Assigner constructs a linear extension L ordering by left endpoints, then (1) ld ( P , L ) = k if P is a semiorder and Builder presents unit intervals and (2) ld ( P , L ) ≤ 2 k otherwise. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 15 / 16

  29. Open Problems Online linear discrepancy No representation, interval orders without 1 + 4 ? Proper representation for semiorders instead of unit? Up-growing? Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 16 / 16

  30. Open Problems Online linear discrepancy No representation, interval orders without 1 + 4 ? Proper representation for semiorders instead of unit? Up-growing? � 3 ∆( P ) − 1 � Is ld ( P ) ≤ ? 2 Known for width 2, disconnected, interval orders. Best general upper bound is 2 ∆( P ) − 2. Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 16 / 16

  31. Open Problems Online linear discrepancy No representation, interval orders without 1 + 4 ? Proper representation for semiorders instead of unit? Up-growing? � 3 ∆( P ) − 1 � Is ld ( P ) ≤ ? 2 Known for width 2, disconnected, interval orders. Best general upper bound is 2 ∆( P ) − 2. Is ld ( P ) ≥ dim ( P ) for dim ( P ) ≥ 5? Mitch Keller (Georgia Tech) Online Linear Discrepancy SIAM DM10 16 / 16

Recommend


More recommend